glibc/sysdeps/powerpc/fpu/e_hypotf.c

77 lines
3.2 KiB
C

/* Pythagorean addition using floats
Copyright (C) 2011-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Adhemerval Zanella <azanella@br.ibm.com>, 2011
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see <http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <stdint.h>
/* __ieee754_hypotf(x,y)
This a FP only version without any FP->INT conversion.
It is similar to default C version, making appropriates
overflow and underflows checks as using double precision
instead of scaling. */
#ifdef _ARCH_PWR7
/* POWER7 isinf and isnan optimizations are fast. */
# define TEST_INF_NAN(x, y) \
if ((isinff(x) || isinff(y)) \
&& !issignaling (x) && !issignaling (y)) \
return INFINITY; \
if (isnanf(x) || isnanf(y)) \
return x + y;
# else
/* For POWER6 and below isinf/isnan triggers LHS and PLT calls are
* costly (especially for POWER6). */
# define GET_TWO_FLOAT_WORD(f1,f2,i1,i2) \
do { \
ieee_float_shape_type gf_u1; \
ieee_float_shape_type gf_u2; \
gf_u1.value = (f1); \
gf_u2.value = (f2); \
(i1) = gf_u1.word & 0x7fffffff; \
(i2) = gf_u2.word & 0x7fffffff; \
} while (0)
# define TEST_INF_NAN(x, y) \
do { \
uint32_t hx, hy; \
GET_TWO_FLOAT_WORD(x, y, hx, hy); \
if (hy > hx) { \
uint32_t ht = hx; hx = hy; hy = ht; \
} \
if (hx >= 0x7f800000) { \
if ((hx == 0x7f800000 || hy == 0x7f800000) \
&& !issignaling (x) && !issignaling (y)) \
return INFINITY; \
return x + y; \
} \
} while (0)
#endif
float
__ieee754_hypotf (float x, float y)
{
TEST_INF_NAN (x, y);
return __ieee754_sqrt ((double) x * x + (double) y * y);
}
strong_alias (__ieee754_hypotf, __hypotf_finite)