mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-15 15:40:12 +00:00
34a5a1460e
The GNU Coding Standards specify that line breaks in expressions should go before an operator, not after one. This patch fixes various code to do this. It only changes code that appears to be mostly following GNU style anyway, not files and directories with substantially different formatting. It is not exhaustive even for files using GNU style (for example, changes to sysdeps files are deferred for subsequent cleanups). Some files changed are shared with gnulib, but most are specific to glibc. Changes were made manually, with places to change found by grep (so some cases, e.g. where the operator was followed by a comment at end of line, are particularly liable to have been missed by grep, but I did include cases where the operator was followed by backslash-newline). This patch generally does not attempt to address other coding style issues in the expressions changed (for example, missing spaces before '(', or lack of parentheses to ensure indentation of continuation lines properly reflects operator precedence). Tested for x86_64, and with build-many-glibcs.py. * benchtests/bench-memmem.c (simple_memmem): Break lines before rather than after operators. * benchtests/bench-skeleton.c (TIMESPEC_AFTER): Likewise. * crypt/md5.c (md5_finish_ctx): Likewise. * crypt/sha256.c (__sha256_finish_ctx): Likewise. * crypt/sha512.c (__sha512_finish_ctx): Likewise. * elf/cache.c (load_aux_cache): Likewise. * elf/dl-load.c (open_verify): Likewise. * elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise. * elf/readelflib.c (process_elf_file): Likewise. * elf/rtld.c (dl_main): Likewise. * elf/sprof.c (generate_call_graph): Likewise. * hurd/ctty-input.c (_hurd_ctty_input): Likewise. * hurd/ctty-output.c (_hurd_ctty_output): Likewise. * hurd/dtable.c (reauth_dtable): Likewise. * hurd/getdport.c (__getdport): Likewise. * hurd/hurd/signal.h (_hurd_interrupted_rpc_timeout): Likewise. * hurd/hurd/sigpreempt.h (HURD_PREEMPT_SIGNAL_P): Likewise. * hurd/hurdfault.c (_hurdsig_fault_catch_exception_raise): Likewise. * hurd/hurdioctl.c (fioctl): Likewise. * hurd/hurdselect.c (_hurd_select): Likewise. * hurd/hurdsig.c (_hurdsig_abort_rpcs): Likewise. (STOPSIGS): Likewise. * hurd/hurdstartup.c (_hurd_startup): Likewise. * hurd/intr-msg.c (_hurd_intr_rpc_mach_msg): Likewise. * hurd/lookup-retry.c (__hurd_file_name_lookup_retry): Likewise. * hurd/msgportdemux.c (msgport_server): Likewise. * hurd/setauth.c (_hurd_setauth): Likewise. * include/features.h (__GLIBC_USE_DEPRECATED_SCANF): Likewise. * libio/libioP.h [IO_DEBUG] (CHECK_FILE): Likewise. * locale/programs/ld-ctype.c (set_class_defaults): Likewise. * localedata/tests-mbwc/tst_swscanf.c (tst_swscanf): Likewise. * login/tst-utmp.c (do_check): Likewise. (simulate_login): Likewise. * mach/lowlevellock.h (lll_lock): Likewise. (lll_trylock): Likewise. * math/test-fenv.c (ALL_EXC): Likewise. * math/test-fenvinline.c (ALL_EXC): Likewise. * misc/sys/cdefs.h (__attribute_deprecated_msg__): Likewise. * nis/nis_call.c (__do_niscall3): Likewise. * nis/nis_callback.c (cb_prog_1): Likewise. * nis/nis_defaults.c (searchaccess): Likewise. * nis/nis_findserv.c (__nis_findfastest_with_timeout): Likewise. * nis/nis_ismember.c (internal_ismember): Likewise. * nis/nis_local_names.c (nis_local_principal): Likewise. * nis/nss_nis/nis-rpc.c (_nss_nis_getrpcbyname_r): Likewise. * nis/nss_nisplus/nisplus-netgrp.c (_nss_nisplus_getnetgrent_r): Likewise. * nis/ypclnt.c (yp_match): Likewise. (yp_first): Likewise. (yp_next): Likewise. (yp_master): Likewise. (yp_order): Likewise. * nscd/hstcache.c (cache_addhst): Likewise. * nscd/initgrcache.c (addinitgroupsX): Likewise. * nss/nss_compat/compat-pwd.c (copy_pwd_changes): Likewise. (internal_getpwuid_r): Likewise. * nss/nss_compat/compat-spwd.c (copy_spwd_changes): Likewise. * posix/glob.h (__GLOB_FLAGS): Likewise. * posix/regcomp.c (peek_token): Likewise. (peek_token_bracket): Likewise. (parse_expression): Likewise. * posix/regexec.c (sift_states_iter_mb): Likewise. (check_node_accept_bytes): Likewise. * posix/tst-spawn3.c (do_test): Likewise. * posix/wordexp-test.c (testit): Likewise. * posix/wordexp.c (parse_tilde): Likewise. (exec_comm): Likewise. * posix/wordexp.h (__WRDE_FLAGS): Likewise. * resource/vtimes.c (TIMEVAL_TO_VTIMES): Likewise. * setjmp/sigjmp.c (__sigjmp_save): Likewise. * stdio-common/printf_fp.c (__printf_fp_l): Likewise. * stdio-common/tst-fileno.c (do_test): Likewise. * stdio-common/vfprintf-internal.c (vfprintf): Likewise. * stdlib/strfmon_l.c (__vstrfmon_l_internal): Likewise. * stdlib/strtod_l.c (round_and_return): Likewise. (____STRTOF_INTERNAL): Likewise. * stdlib/tst-strfrom.h (TEST_STRFROM): Likewise. * string/strcspn.c (STRCSPN): Likewise. * string/test-memmem.c (simple_memmem): Likewise. * termios/tcsetattr.c (tcsetattr): Likewise. * time/alt_digit.c (_nl_parse_alt_digit): Likewise. * time/asctime.c (asctime_internal): Likewise. * time/strptime_l.c (__strptime_internal): Likewise. * time/sys/time.h (timercmp): Likewise. * time/tzfile.c (__tzfile_compute): Likewise.
492 lines
12 KiB
C
492 lines
12 KiB
C
/* Guts of both `select' and `poll' for Hurd.
|
|
Copyright (C) 1991-2019 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/poll.h>
|
|
#include <hurd.h>
|
|
#include <hurd/fd.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
|
|
/* All user select types. */
|
|
#define SELECT_ALL (SELECT_READ | SELECT_WRITE | SELECT_URG)
|
|
|
|
/* Used to record that a particular select rpc returned. Must be distinct
|
|
from SELECT_ALL (which better not have the high bit set). */
|
|
#define SELECT_RETURNED ((SELECT_ALL << 1) & ~SELECT_ALL)
|
|
|
|
/* Check the first NFDS descriptors either in POLLFDS (if nonnnull) or in
|
|
each of READFDS, WRITEFDS, EXCEPTFDS that is nonnull. If TIMEOUT is not
|
|
NULL, time out after waiting the interval specified therein. Returns
|
|
the number of ready descriptors, or -1 for errors. */
|
|
int
|
|
_hurd_select (int nfds,
|
|
struct pollfd *pollfds,
|
|
fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
|
|
const struct timespec *timeout, const sigset_t *sigmask)
|
|
{
|
|
int i;
|
|
mach_port_t portset;
|
|
int got;
|
|
error_t err;
|
|
fd_set rfds, wfds, xfds;
|
|
int firstfd, lastfd;
|
|
mach_msg_timeout_t to = 0;
|
|
struct
|
|
{
|
|
struct hurd_userlink ulink;
|
|
struct hurd_fd *cell;
|
|
mach_port_t io_port;
|
|
int type;
|
|
mach_port_t reply_port;
|
|
} d[nfds];
|
|
sigset_t oset;
|
|
|
|
union typeword /* Use this to avoid unkosher casts. */
|
|
{
|
|
mach_msg_type_t type;
|
|
uint32_t word;
|
|
};
|
|
assert (sizeof (union typeword) == sizeof (mach_msg_type_t));
|
|
assert (sizeof (uint32_t) == sizeof (mach_msg_type_t));
|
|
|
|
if (nfds < 0 || (pollfds == NULL && nfds > FD_SETSIZE))
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (timeout != NULL)
|
|
{
|
|
if (timeout->tv_sec < 0 || timeout->tv_nsec < 0)
|
|
{
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
to = (timeout->tv_sec * 1000
|
|
+ (timeout->tv_nsec + 999999) / 1000000);
|
|
}
|
|
|
|
if (sigmask && __sigprocmask (SIG_SETMASK, sigmask, &oset))
|
|
return -1;
|
|
|
|
if (pollfds)
|
|
{
|
|
/* Collect interesting descriptors from the user's `pollfd' array.
|
|
We do a first pass that reads the user's array before taking
|
|
any locks. The second pass then only touches our own stack,
|
|
and gets the port references. */
|
|
|
|
for (i = 0; i < nfds; ++i)
|
|
if (pollfds[i].fd >= 0)
|
|
{
|
|
int type = 0;
|
|
if (pollfds[i].events & POLLIN)
|
|
type |= SELECT_READ;
|
|
if (pollfds[i].events & POLLOUT)
|
|
type |= SELECT_WRITE;
|
|
if (pollfds[i].events & POLLPRI)
|
|
type |= SELECT_URG;
|
|
|
|
d[i].io_port = pollfds[i].fd;
|
|
d[i].type = type;
|
|
}
|
|
else
|
|
d[i].type = 0;
|
|
|
|
HURD_CRITICAL_BEGIN;
|
|
__mutex_lock (&_hurd_dtable_lock);
|
|
|
|
for (i = 0; i < nfds; ++i)
|
|
if (d[i].type != 0)
|
|
{
|
|
const int fd = (int) d[i].io_port;
|
|
|
|
if (fd < _hurd_dtablesize)
|
|
{
|
|
d[i].cell = _hurd_dtable[fd];
|
|
d[i].io_port = _hurd_port_get (&d[i].cell->port, &d[i].ulink);
|
|
if (d[i].io_port != MACH_PORT_NULL)
|
|
continue;
|
|
}
|
|
|
|
/* If one descriptor is bogus, we fail completely. */
|
|
while (i-- > 0)
|
|
if (d[i].type != 0)
|
|
_hurd_port_free (&d[i].cell->port,
|
|
&d[i].ulink, d[i].io_port);
|
|
break;
|
|
}
|
|
|
|
__mutex_unlock (&_hurd_dtable_lock);
|
|
HURD_CRITICAL_END;
|
|
|
|
if (i < nfds)
|
|
{
|
|
if (sigmask)
|
|
__sigprocmask (SIG_SETMASK, &oset, NULL);
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
lastfd = i - 1;
|
|
firstfd = i == 0 ? lastfd : 0;
|
|
}
|
|
else
|
|
{
|
|
/* Collect interested descriptors from the user's fd_set arguments.
|
|
Use local copies so we can't crash from user bogosity. */
|
|
|
|
if (readfds == NULL)
|
|
FD_ZERO (&rfds);
|
|
else
|
|
rfds = *readfds;
|
|
if (writefds == NULL)
|
|
FD_ZERO (&wfds);
|
|
else
|
|
wfds = *writefds;
|
|
if (exceptfds == NULL)
|
|
FD_ZERO (&xfds);
|
|
else
|
|
xfds = *exceptfds;
|
|
|
|
HURD_CRITICAL_BEGIN;
|
|
__mutex_lock (&_hurd_dtable_lock);
|
|
|
|
if (nfds > _hurd_dtablesize)
|
|
nfds = _hurd_dtablesize;
|
|
|
|
/* Collect the ports for interesting FDs. */
|
|
firstfd = lastfd = -1;
|
|
for (i = 0; i < nfds; ++i)
|
|
{
|
|
int type = 0;
|
|
if (readfds != NULL && FD_ISSET (i, &rfds))
|
|
type |= SELECT_READ;
|
|
if (writefds != NULL && FD_ISSET (i, &wfds))
|
|
type |= SELECT_WRITE;
|
|
if (exceptfds != NULL && FD_ISSET (i, &xfds))
|
|
type |= SELECT_URG;
|
|
d[i].type = type;
|
|
if (type)
|
|
{
|
|
d[i].cell = _hurd_dtable[i];
|
|
d[i].io_port = _hurd_port_get (&d[i].cell->port, &d[i].ulink);
|
|
if (d[i].io_port == MACH_PORT_NULL)
|
|
{
|
|
/* If one descriptor is bogus, we fail completely. */
|
|
while (i-- > 0)
|
|
if (d[i].type != 0)
|
|
_hurd_port_free (&d[i].cell->port, &d[i].ulink,
|
|
d[i].io_port);
|
|
break;
|
|
}
|
|
lastfd = i;
|
|
if (firstfd == -1)
|
|
firstfd = i;
|
|
}
|
|
}
|
|
|
|
__mutex_unlock (&_hurd_dtable_lock);
|
|
HURD_CRITICAL_END;
|
|
|
|
if (i < nfds)
|
|
{
|
|
if (sigmask)
|
|
__sigprocmask (SIG_SETMASK, &oset, NULL);
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
err = 0;
|
|
got = 0;
|
|
|
|
/* Send them all io_select request messages. */
|
|
|
|
if (firstfd == -1)
|
|
/* But not if there were no ports to deal with at all.
|
|
We are just a pure timeout. */
|
|
portset = __mach_reply_port ();
|
|
else
|
|
{
|
|
portset = MACH_PORT_NULL;
|
|
|
|
for (i = firstfd; i <= lastfd; ++i)
|
|
if (d[i].type)
|
|
{
|
|
int type = d[i].type;
|
|
d[i].reply_port = __mach_reply_port ();
|
|
err = __io_select (d[i].io_port, d[i].reply_port,
|
|
/* Poll only if there's a single descriptor. */
|
|
(firstfd == lastfd) ? to : 0,
|
|
&type);
|
|
switch (err)
|
|
{
|
|
case MACH_RCV_TIMED_OUT:
|
|
/* No immediate response. This is normal. */
|
|
err = 0;
|
|
if (firstfd == lastfd)
|
|
/* When there's a single descriptor, we don't need a
|
|
portset, so just pretend we have one, but really
|
|
use the single reply port. */
|
|
portset = d[i].reply_port;
|
|
else if (got == 0)
|
|
/* We've got multiple reply ports, so we need a port set to
|
|
multiplex them. */
|
|
{
|
|
/* We will wait again for a reply later. */
|
|
if (portset == MACH_PORT_NULL)
|
|
/* Create the portset to receive all the replies on. */
|
|
err = __mach_port_allocate (__mach_task_self (),
|
|
MACH_PORT_RIGHT_PORT_SET,
|
|
&portset);
|
|
if (! err)
|
|
/* Put this reply port in the port set. */
|
|
__mach_port_move_member (__mach_task_self (),
|
|
d[i].reply_port, portset);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* No other error should happen. Callers of select
|
|
don't expect to see errors, so we simulate
|
|
readiness of the erring object and the next call
|
|
hopefully will get the error again. */
|
|
type = SELECT_ALL;
|
|
/* FALLTHROUGH */
|
|
|
|
case 0:
|
|
/* We got an answer. */
|
|
if ((type & SELECT_ALL) == 0)
|
|
/* Bogus answer; treat like an error, as a fake positive. */
|
|
type = SELECT_ALL;
|
|
|
|
/* This port is already ready already. */
|
|
d[i].type &= type;
|
|
d[i].type |= SELECT_RETURNED;
|
|
++got;
|
|
break;
|
|
}
|
|
_hurd_port_free (&d[i].cell->port, &d[i].ulink, d[i].io_port);
|
|
}
|
|
}
|
|
|
|
/* Now wait for reply messages. */
|
|
if (!err && got == 0)
|
|
{
|
|
/* Now wait for io_select_reply messages on PORT,
|
|
timing out as appropriate. */
|
|
|
|
union
|
|
{
|
|
mach_msg_header_t head;
|
|
#ifdef MACH_MSG_TRAILER_MINIMUM_SIZE
|
|
struct
|
|
{
|
|
mach_msg_header_t head;
|
|
NDR_record_t ndr;
|
|
error_t err;
|
|
} error;
|
|
struct
|
|
{
|
|
mach_msg_header_t head;
|
|
NDR_record_t ndr;
|
|
error_t err;
|
|
int result;
|
|
mach_msg_trailer_t trailer;
|
|
} success;
|
|
#else
|
|
struct
|
|
{
|
|
mach_msg_header_t head;
|
|
union typeword err_type;
|
|
error_t err;
|
|
} error;
|
|
struct
|
|
{
|
|
mach_msg_header_t head;
|
|
union typeword err_type;
|
|
error_t err;
|
|
union typeword result_type;
|
|
int result;
|
|
} success;
|
|
#endif
|
|
} msg;
|
|
mach_msg_option_t options = (timeout == NULL ? 0 : MACH_RCV_TIMEOUT);
|
|
error_t msgerr;
|
|
while ((msgerr = __mach_msg (&msg.head,
|
|
MACH_RCV_MSG | MACH_RCV_INTERRUPT | options,
|
|
0, sizeof msg, portset, to,
|
|
MACH_PORT_NULL)) == MACH_MSG_SUCCESS)
|
|
{
|
|
/* We got a message. Decode it. */
|
|
#define IO_SELECT_REPLY_MSGID (21012 + 100) /* XXX */
|
|
#ifdef MACH_MSG_TYPE_BIT
|
|
const union typeword inttype =
|
|
{ type:
|
|
{ MACH_MSG_TYPE_INTEGER_T, sizeof (integer_t) * 8, 1, 1, 0, 0 }
|
|
};
|
|
#endif
|
|
if (msg.head.msgh_id == IO_SELECT_REPLY_MSGID
|
|
&& msg.head.msgh_size >= sizeof msg.error
|
|
&& !(msg.head.msgh_bits & MACH_MSGH_BITS_COMPLEX)
|
|
#ifdef MACH_MSG_TYPE_BIT
|
|
&& msg.error.err_type.word == inttype.word
|
|
#endif
|
|
)
|
|
{
|
|
/* This is a properly formatted message so far.
|
|
See if it is a success or a failure. */
|
|
if (msg.error.err == EINTR
|
|
&& msg.head.msgh_size == sizeof msg.error)
|
|
{
|
|
/* EINTR response; poll for further responses
|
|
and then return quickly. */
|
|
err = EINTR;
|
|
goto poll;
|
|
}
|
|
if (msg.error.err
|
|
|| msg.head.msgh_size != sizeof msg.success
|
|
#ifdef MACH_MSG_TYPE_BIT
|
|
|| msg.success.result_type.word != inttype.word
|
|
#endif
|
|
|| (msg.success.result & SELECT_ALL) == 0)
|
|
{
|
|
/* Error or bogus reply. Simulate readiness. */
|
|
__mach_msg_destroy (&msg.head);
|
|
msg.success.result = SELECT_ALL;
|
|
}
|
|
|
|
/* Look up the respondent's reply port and record its
|
|
readiness. */
|
|
{
|
|
int had = got;
|
|
if (firstfd != -1)
|
|
for (i = firstfd; i <= lastfd; ++i)
|
|
if (d[i].type
|
|
&& d[i].reply_port == msg.head.msgh_local_port)
|
|
{
|
|
d[i].type &= msg.success.result;
|
|
d[i].type |= SELECT_RETURNED;
|
|
++got;
|
|
}
|
|
assert (got > had);
|
|
}
|
|
}
|
|
|
|
if (msg.head.msgh_remote_port != MACH_PORT_NULL)
|
|
__mach_port_deallocate (__mach_task_self (),
|
|
msg.head.msgh_remote_port);
|
|
|
|
if (got)
|
|
poll:
|
|
{
|
|
/* Poll for another message. */
|
|
to = 0;
|
|
options |= MACH_RCV_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
if (msgerr == MACH_RCV_INTERRUPTED)
|
|
/* Interruption on our side (e.g. signal reception). */
|
|
err = EINTR;
|
|
|
|
if (got)
|
|
/* At least one descriptor is known to be ready now, so we will
|
|
return success. */
|
|
err = 0;
|
|
}
|
|
|
|
if (firstfd != -1)
|
|
for (i = firstfd; i <= lastfd; ++i)
|
|
if (d[i].type)
|
|
__mach_port_destroy (__mach_task_self (), d[i].reply_port);
|
|
if (firstfd == -1 || (firstfd != lastfd && portset != MACH_PORT_NULL))
|
|
/* Destroy PORTSET, but only if it's not actually the reply port for a
|
|
single descriptor (in which case it's destroyed in the previous loop;
|
|
not doing it here is just a bit more efficient). */
|
|
__mach_port_destroy (__mach_task_self (), portset);
|
|
|
|
if (err)
|
|
{
|
|
if (sigmask)
|
|
__sigprocmask (SIG_SETMASK, &oset, NULL);
|
|
return __hurd_fail (err);
|
|
}
|
|
|
|
if (pollfds)
|
|
/* Fill in the `revents' members of the user's array. */
|
|
for (i = 0; i < nfds; ++i)
|
|
{
|
|
int type = d[i].type;
|
|
int_fast16_t revents = 0;
|
|
|
|
if (type & SELECT_RETURNED)
|
|
{
|
|
if (type & SELECT_READ)
|
|
revents |= POLLIN;
|
|
if (type & SELECT_WRITE)
|
|
revents |= POLLOUT;
|
|
if (type & SELECT_URG)
|
|
revents |= POLLPRI;
|
|
}
|
|
|
|
pollfds[i].revents = revents;
|
|
}
|
|
else
|
|
{
|
|
/* Below we recalculate GOT to include an increment for each operation
|
|
allowed on each fd. */
|
|
got = 0;
|
|
|
|
/* Set the user bitarrays. We only ever have to clear bits, as all
|
|
desired ones are initially set. */
|
|
if (firstfd != -1)
|
|
for (i = firstfd; i <= lastfd; ++i)
|
|
{
|
|
int type = d[i].type;
|
|
|
|
if ((type & SELECT_RETURNED) == 0)
|
|
type = 0;
|
|
|
|
if (type & SELECT_READ)
|
|
got++;
|
|
else if (readfds)
|
|
FD_CLR (i, readfds);
|
|
if (type & SELECT_WRITE)
|
|
got++;
|
|
else if (writefds)
|
|
FD_CLR (i, writefds);
|
|
if (type & SELECT_URG)
|
|
got++;
|
|
else if (exceptfds)
|
|
FD_CLR (i, exceptfds);
|
|
}
|
|
}
|
|
|
|
if (sigmask && __sigprocmask (SIG_SETMASK, &oset, NULL))
|
|
return -1;
|
|
|
|
return got;
|
|
}
|