glibc/malloc/tst-mallocstate.c
Siddhesh Poyarekar 30891f35fa Remove "Contributed by" lines
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date.  Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.

Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions.  These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.

The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively.  These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:

https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc
https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02

Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2021-09-03 22:06:44 +05:30

494 lines
15 KiB
C

/* Emulate Emacs heap dumping to test malloc_set_state.
Copyright (C) 2001-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <libc-symbols.h>
#include <shlib-compat.h>
#include <support/check.h>
#include <support/support.h>
#include <support/test-driver.h>
#include "malloc.h"
/* Make the compatibility symbols availabile to this test case. */
void *malloc_get_state (void);
compat_symbol_reference (libc, malloc_get_state, malloc_get_state, GLIBC_2_0);
int malloc_set_state (void *);
compat_symbol_reference (libc, malloc_set_state, malloc_set_state, GLIBC_2_0);
/* Maximum object size in the fake heap. */
enum { max_size = 64 };
/* Allocation actions. These are randomized actions executed on the
dumped heap (see allocation_tasks below). They are interspersed
with operations on the new heap (see heap_activity). */
enum allocation_action
{
action_free, /* Dumped and freed. */
action_realloc, /* Dumped and realloc'ed. */
action_realloc_same, /* Dumped and realloc'ed, same size. */
action_realloc_smaller, /* Dumped and realloc'ed, shrinked. */
action_count
};
/* Dumped heap. Initialize it, so that the object is placed into the
.data section, for increased realism. The size is an upper bound;
we use about half of the space. */
static size_t dumped_heap[action_count * max_size * max_size
/ sizeof (size_t)] = {1};
/* Next free space in the dumped heap. Also top of the heap at the
end of the initialization procedure. */
static size_t *next_heap_chunk;
/* Copied from malloc.c and hooks.c. The version is deliberately
lower than the final version of malloc_set_state. */
# define NBINS 128
# define MALLOC_STATE_MAGIC 0x444c4541l
# define MALLOC_STATE_VERSION (0 * 0x100l + 4l)
static struct
{
long magic;
long version;
void *av[NBINS * 2 + 2];
char *sbrk_base;
int sbrked_mem_bytes;
unsigned long trim_threshold;
unsigned long top_pad;
unsigned int n_mmaps_max;
unsigned long mmap_threshold;
int check_action;
unsigned long max_sbrked_mem;
unsigned long max_total_mem;
unsigned int n_mmaps;
unsigned int max_n_mmaps;
unsigned long mmapped_mem;
unsigned long max_mmapped_mem;
int using_malloc_checking;
unsigned long max_fast;
unsigned long arena_test;
unsigned long arena_max;
unsigned long narenas;
} save_state =
{
.magic = MALLOC_STATE_MAGIC,
.version = MALLOC_STATE_VERSION,
};
/* Allocate a blob in the fake heap. */
static void *
dumped_heap_alloc (size_t length)
{
/* malloc needs three state bits in the size field, so the minimum
alignment is 8 even on 32-bit architectures. malloc_set_state
should be compatible with such heaps even if it currently
provides more alignment to applications. */
enum
{
heap_alignment = 8,
heap_alignment_mask = heap_alignment - 1
};
_Static_assert (sizeof (size_t) <= heap_alignment,
"size_t compatible with heap alignment");
/* Need at least this many bytes for metadata and application
data. */
size_t chunk_size = sizeof (size_t) + length;
/* Round up the allocation size to the heap alignment. */
chunk_size += heap_alignment_mask;
chunk_size &= ~heap_alignment_mask;
TEST_VERIFY_EXIT ((chunk_size & 3) == 0);
if (next_heap_chunk == NULL)
/* Initialize the top of the heap. Add one word of zero padding,
to match existing practice. */
{
dumped_heap[0] = 0;
next_heap_chunk = dumped_heap + 1;
}
else
/* The previous chunk is allocated. */
chunk_size |= 1;
*next_heap_chunk = chunk_size;
/* User data starts after the chunk header. */
void *result = next_heap_chunk + 1;
next_heap_chunk += chunk_size / sizeof (size_t);
/* Mark the previous chunk as used. */
*next_heap_chunk = 1;
return result;
}
/* Global seed variable for the random number generator. */
static unsigned long long global_seed;
/* Simple random number generator. The numbers are in the range from
0 to UINT_MAX (inclusive). */
static unsigned int
rand_next (unsigned long long *seed)
{
/* Linear congruential generated as used for MMIX. */
*seed = *seed * 6364136223846793005ULL + 1442695040888963407ULL;
return *seed >> 32;
}
/* Fill LENGTH bytes at BUFFER with random contents, as determined by
SEED. */
static void
randomize_buffer (unsigned char *buffer, size_t length,
unsigned long long seed)
{
for (size_t i = 0; i < length; ++i)
buffer[i] = rand_next (&seed);
}
/* Dumps the buffer to standard output, in hexadecimal. */
static void
dump_hex (unsigned char *buffer, size_t length)
{
for (int i = 0; i < length; ++i)
printf (" %02X", buffer[i]);
}
/* Set to true if an error is encountered. */
static bool errors = false;
/* Keep track of object allocations. */
struct allocation
{
unsigned char *data;
unsigned int size;
unsigned int seed;
};
/* Check that the allocation task allocation has the expected
contents. */
static void
check_allocation (const struct allocation *alloc, int index)
{
size_t size = alloc->size;
if (alloc->data == NULL)
{
printf ("error: NULL pointer for allocation of size %zu at %d, seed %u\n",
size, index, alloc->seed);
errors = true;
return;
}
unsigned char expected[4096];
if (size > sizeof (expected))
{
printf ("error: invalid allocation size %zu at %d, seed %u\n",
size, index, alloc->seed);
errors = true;
return;
}
randomize_buffer (expected, size, alloc->seed);
if (memcmp (alloc->data, expected, size) != 0)
{
printf ("error: allocation %d data mismatch, size %zu, seed %u\n",
index, size, alloc->seed);
printf (" expected:");
dump_hex (expected, size);
putc ('\n', stdout);
printf (" actual:");
dump_hex (alloc->data, size);
putc ('\n', stdout);
errors = true;
}
}
/* A heap allocation combined with pending actions on it. */
struct allocation_task
{
struct allocation allocation;
enum allocation_action action;
};
/* Allocation tasks. Initialized by init_allocation_tasks and used by
perform_allocations. */
enum { allocation_task_count = action_count * max_size };
static struct allocation_task allocation_tasks[allocation_task_count];
/* Fisher-Yates shuffle of allocation_tasks. */
static void
shuffle_allocation_tasks (void)
{
for (int i = 0; i < allocation_task_count - 1; ++i)
{
/* Pick pair in the tail of the array. */
int j = i + (rand_next (&global_seed)
% ((unsigned) (allocation_task_count - i)));
TEST_VERIFY_EXIT (j >= 0 && j < allocation_task_count);
/* Exchange. */
struct allocation_task tmp = allocation_tasks[i];
allocation_tasks[i] = allocation_tasks[j];
allocation_tasks[j] = tmp;
}
}
/* Set up the allocation tasks and the dumped heap. */
static void
initial_allocations (void)
{
/* Initialize in a position-dependent way. */
for (int i = 0; i < allocation_task_count; ++i)
allocation_tasks[i] = (struct allocation_task)
{
.allocation =
{
.size = 1 + (i / action_count),
.seed = i,
},
.action = i % action_count
};
/* Execute the tasks in a random order. */
shuffle_allocation_tasks ();
/* Initialize the contents of the dumped heap. */
for (int i = 0; i < allocation_task_count; ++i)
{
struct allocation_task *task = allocation_tasks + i;
task->allocation.data = dumped_heap_alloc (task->allocation.size);
randomize_buffer (task->allocation.data, task->allocation.size,
task->allocation.seed);
}
for (int i = 0; i < allocation_task_count; ++i)
check_allocation (&allocation_tasks[i].allocation, i);
}
/* Indicates whether init_heap has run. This variable needs to be
volatile because malloc is declared __THROW, which implies it is a
leaf function, but we expect it to run our hooks. */
static volatile bool heap_initialized;
/* Executed by glibc malloc, through __malloc_initialize_hook
below. */
static void
init_heap (void)
{
if (test_verbose)
printf ("info: performing heap initialization\n");
heap_initialized = true;
/* Populate the dumped heap. */
initial_allocations ();
/* Complete initialization of the saved heap data structure. */
save_state.sbrk_base = (void *) dumped_heap;
save_state.sbrked_mem_bytes = sizeof (dumped_heap);
/* Top pointer. Adjust so that it points to the start of struct
malloc_chunk. */
save_state.av[2] = (void *) (next_heap_chunk - 1);
/* Integrate the dumped heap into the process heap. */
TEST_VERIFY_EXIT (malloc_set_state (&save_state) == 0);
}
/* Interpose the initialization callback. */
void (*volatile __malloc_initialize_hook) (void) = init_heap;
compat_symbol_reference (libc, __malloc_initialize_hook,
__malloc_initialize_hook, GLIBC_2_0);
/* Simulate occasional unrelated heap activity in the non-dumped
heap. */
enum { heap_activity_allocations_count = 32 };
static struct allocation heap_activity_allocations
[heap_activity_allocations_count] = {};
static int heap_activity_seed_counter = 1000 * 1000;
static void
heap_activity (void)
{
/* Only do this from time to time. */
if ((rand_next (&global_seed) % 4) == 0)
{
int slot = rand_next (&global_seed) % heap_activity_allocations_count;
struct allocation *alloc = heap_activity_allocations + slot;
if (alloc->data == NULL)
{
alloc->size = rand_next (&global_seed) % (4096U + 1);
alloc->data = xmalloc (alloc->size);
alloc->seed = heap_activity_seed_counter++;
randomize_buffer (alloc->data, alloc->size, alloc->seed);
check_allocation (alloc, 1000 + slot);
}
else
{
check_allocation (alloc, 1000 + slot);
free (alloc->data);
alloc->data = NULL;
}
}
}
static void
heap_activity_deallocate (void)
{
for (int i = 0; i < heap_activity_allocations_count; ++i)
free (heap_activity_allocations[i].data);
}
/* Perform a full heap check across the dumped heap allocation tasks,
and the simulated heap activity directly above. */
static void
full_heap_check (void)
{
/* Dumped heap. */
for (int i = 0; i < allocation_task_count; ++i)
if (allocation_tasks[i].allocation.data != NULL)
check_allocation (&allocation_tasks[i].allocation, i);
/* Heap activity allocations. */
for (int i = 0; i < heap_activity_allocations_count; ++i)
if (heap_activity_allocations[i].data != NULL)
check_allocation (heap_activity_allocations + i, i);
}
/* Used as an optimization barrier to force a heap allocation. */
__attribute__ ((noinline, noclone))
static void
my_free (void *ptr)
{
free (ptr);
}
static int
do_test (void)
{
my_free (malloc (1));
TEST_VERIFY_EXIT (heap_initialized);
/* The first pass performs the randomly generated allocation
tasks. */
if (test_verbose)
printf ("info: first pass through allocation tasks\n");
full_heap_check ();
/* Execute the post-undump tasks in a random order. */
shuffle_allocation_tasks ();
for (int i = 0; i < allocation_task_count; ++i)
{
heap_activity ();
struct allocation_task *task = allocation_tasks + i;
switch (task->action)
{
case action_free:
check_allocation (&task->allocation, i);
free (task->allocation.data);
task->allocation.data = NULL;
break;
case action_realloc:
check_allocation (&task->allocation, i);
task->allocation.data = xrealloc
(task->allocation.data, task->allocation.size + max_size);
check_allocation (&task->allocation, i);
break;
case action_realloc_same:
check_allocation (&task->allocation, i);
task->allocation.data = xrealloc
(task->allocation.data, task->allocation.size);
check_allocation (&task->allocation, i);
break;
case action_realloc_smaller:
check_allocation (&task->allocation, i);
size_t new_size = task->allocation.size - 1;
task->allocation.data = xrealloc (task->allocation.data, new_size);
if (new_size == 0)
{
if (task->allocation.data != NULL)
{
printf ("error: realloc with size zero did not deallocate\n");
errors = true;
}
/* No further action on this task. */
task->action = action_free;
}
else
{
task->allocation.size = new_size;
check_allocation (&task->allocation, i);
}
break;
case action_count:
FAIL_EXIT1 ("task->action should never be action_count");
}
full_heap_check ();
}
/* The second pass frees the objects which were allocated during the
first pass. */
if (test_verbose)
printf ("info: second pass through allocation tasks\n");
shuffle_allocation_tasks ();
for (int i = 0; i < allocation_task_count; ++i)
{
heap_activity ();
struct allocation_task *task = allocation_tasks + i;
switch (task->action)
{
case action_free:
/* Already freed, nothing to do. */
break;
case action_realloc:
case action_realloc_same:
case action_realloc_smaller:
check_allocation (&task->allocation, i);
free (task->allocation.data);
task->allocation.data = NULL;
break;
case action_count:
FAIL_EXIT1 ("task->action should never be action_count");
}
full_heap_check ();
}
heap_activity_deallocate ();
/* Check that the malloc_get_state stub behaves in the intended
way. */
errno = 0;
if (malloc_get_state () != NULL)
{
printf ("error: malloc_get_state succeeded\n");
errors = true;
}
if (errno != ENOSYS)
{
printf ("error: malloc_get_state: %m\n");
errors = true;
}
return errors;
}
#include <support/test-driver.c>