mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 15:00:06 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
783 lines
24 KiB
ArmAsm
783 lines
24 KiB
ArmAsm
.file "libm_sincos.s"
|
|
|
|
|
|
// Copyright (c) 2002 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/01/02 Initial version
|
|
// 02/18/02 Large arguments processing routine is excluded.
|
|
// External interface entry points are added
|
|
// 03/13/02 Corrected restore of predicate registers
|
|
// 03/19/02 Added stack unwind around call to __libm_cis_large
|
|
// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
|
// 08/08/03 Improved performance
|
|
// 02/11/04 cis is moved to the separate file.
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
//
|
|
// API
|
|
//==============================================================
|
|
// 1) void sincos(double, double*s, double*c)
|
|
// 2) __libm_sincos - internal LIBM function, that accepts
|
|
// argument in f8 and returns cosine through f8, sine through f9
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
//
|
|
// Step 1
|
|
// ======
|
|
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
|
|
// divide x by pi/2^k.
|
|
// Multiply by 2^k/pi.
|
|
// nfloat = Round result to integer (round-to-nearest)
|
|
//
|
|
// r = x - nfloat * pi/2^k
|
|
// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
|
|
// nfloat * LOW(pi/2^k)) -
|
|
// nfloat * LOWEST(pi/2^k) for increased accuracy.
|
|
// pi/2^k is stored as two numbers that when added make pi/2^k.
|
|
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
|
|
// HIGH and LOW parts are rounded to zero values,
|
|
// and LOWEST is rounded to nearest one.
|
|
//
|
|
// x = (nfloat * pi/2^k) + r
|
|
// r is small enough that we can use a polynomial approximation
|
|
// and is referred to as the reduced argument.
|
|
//
|
|
// Step 3
|
|
// ======
|
|
// Take the unreduced part and remove the multiples of 2pi.
|
|
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
|
|
//
|
|
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
|
|
// N * 2^(k+1)
|
|
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N2pi + M * pi/2^k
|
|
//
|
|
//
|
|
// Sin(x) = Sin((nfloat * pi/2^k) + r)
|
|
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
|
|
//
|
|
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
|
|
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
|
|
// = Sin(Mpi/2^k)
|
|
//
|
|
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
|
|
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
|
|
// = Cos(Mpi/2^k)
|
|
//
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
//
|
|
// Step 4
|
|
// ======
|
|
// 0 <= M < 2^(k+1)
|
|
// There are 2^(k+1) Sin entries in a table.
|
|
// There are 2^(k+1) Cos entries in a table.
|
|
//
|
|
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
|
|
//
|
|
//
|
|
// Step 5
|
|
// ======
|
|
// Calculate Cos(r) and Sin(r) by polynomial approximation.
|
|
//
|
|
// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
|
|
// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
|
|
//
|
|
// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
|
|
//
|
|
//
|
|
// Calculate
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
// as follows
|
|
//
|
|
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
|
|
// rsq = r*r
|
|
//
|
|
//
|
|
// P = p1 + r^2p2 + r^4p3 + r^6p4
|
|
// Q = q1 + r^2q2 + r^4q3 + r^6q4
|
|
//
|
|
// rcub = r * rsq
|
|
// Sin(r) = r + rcub * P
|
|
// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
|
|
//
|
|
// The coefficients are not exactly these values, but almost.
|
|
//
|
|
// p1 = -1/6 = -1/3!
|
|
// p2 = 1/120 = 1/5!
|
|
// p3 = -1/5040 = -1/7!
|
|
// p4 = 1/362889 = 1/9!
|
|
//
|
|
// P = r + rcub * P
|
|
//
|
|
// Answer = S[m] Cos(r) + C[m] P
|
|
//
|
|
// Cos(r) = 1 + rsq Q
|
|
// Cos(r) = 1 + r^2 Q
|
|
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
|
|
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
|
|
//
|
|
// S[m] Cos(r) = S[m](1 + rsq Q)
|
|
// S[m] Cos(r) = S[m] + S[m] rsq Q
|
|
// S[m] Cos(r) = S[m] + s_rsq Q
|
|
// Q = S[m] + s_rsq Q
|
|
//
|
|
// Then,
|
|
//
|
|
// Answer = Q + C[m] P
|
|
|
|
// Registers used
|
|
//==============================================================
|
|
// general input registers:
|
|
// r14 -> r39
|
|
|
|
// predicate registers used:
|
|
// p6 -> p14
|
|
//
|
|
// floating-point registers used
|
|
// f9 -> f15
|
|
// f32 -> f67
|
|
|
|
// Assembly macros
|
|
//==============================================================
|
|
|
|
cis_Arg = f8
|
|
|
|
cis_Sin_res = f9
|
|
cis_Cos_res = f8
|
|
|
|
cis_NORM_f8 = f10
|
|
cis_W = f11
|
|
cis_int_Nfloat = f12
|
|
cis_Nfloat = f13
|
|
|
|
cis_r = f14
|
|
cis_rsq = f15
|
|
cis_rcub = f32
|
|
|
|
cis_Inv_Pi_by_16 = f33
|
|
cis_Pi_by_16_hi = f34
|
|
cis_Pi_by_16_lo = f35
|
|
|
|
cis_Inv_Pi_by_64 = f36
|
|
cis_Pi_by_16_lowest = f37
|
|
cis_r_exact = f38
|
|
|
|
|
|
cis_P1 = f39
|
|
cis_Q1 = f40
|
|
cis_P2 = f41
|
|
cis_Q2 = f42
|
|
cis_P3 = f43
|
|
cis_Q3 = f44
|
|
cis_P4 = f45
|
|
cis_Q4 = f46
|
|
|
|
cis_P_temp1 = f47
|
|
cis_P_temp2 = f48
|
|
|
|
cis_Q_temp1 = f49
|
|
cis_Q_temp2 = f50
|
|
|
|
cis_P = f51
|
|
|
|
cis_SIG_INV_PI_BY_16_2TO61 = f52
|
|
cis_RSHF_2TO61 = f53
|
|
cis_RSHF = f54
|
|
cis_2TOM61 = f55
|
|
cis_NFLOAT = f56
|
|
cis_W_2TO61_RSH = f57
|
|
|
|
cis_tmp = f58
|
|
|
|
cis_Sm_sin = f59
|
|
cis_Cm_sin = f60
|
|
|
|
cis_Sm_cos = f61
|
|
cis_Cm_cos = f62
|
|
|
|
cis_srsq_sin = f63
|
|
cis_srsq_cos = f64
|
|
|
|
cis_Q_sin = f65
|
|
cis_Q_cos = f66
|
|
cis_Q = f67
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
cis_pResSin = r33
|
|
cis_pResCos = r34
|
|
|
|
cis_GR_sig_inv_pi_by_16 = r14
|
|
cis_GR_rshf_2to61 = r15
|
|
cis_GR_rshf = r16
|
|
cis_GR_exp_2tom61 = r17
|
|
cis_GR_n = r18
|
|
cis_GR_n_sin = r19
|
|
cis_exp_limit = r20
|
|
cis_r_signexp = r21
|
|
cis_AD_1 = r22
|
|
cis_r_sincos = r23
|
|
cis_r_exp = r24
|
|
cis_r_17_ones = r25
|
|
cis_GR_m_sin = r26
|
|
cis_GR_32m_sin = r26
|
|
cis_GR_n_cos = r27
|
|
cis_GR_m_cos = r28
|
|
cis_GR_32m_cos = r28
|
|
cis_AD_2_sin = r29
|
|
cis_AD_2_cos = r30
|
|
cis_gr_tmp = r31
|
|
|
|
GR_SAVE_B0 = r35
|
|
GR_SAVE_GP = r36
|
|
rB0_SAVED = r37
|
|
GR_SAVE_PFS = r38
|
|
GR_SAVE_PR = r39
|
|
|
|
RODATA
|
|
|
|
.align 16
|
|
// Pi/16 parts
|
|
LOCAL_OBJECT_START(double_cis_pi)
|
|
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
|
|
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
|
|
data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
|
|
LOCAL_OBJECT_END(double_cis_pi)
|
|
|
|
// Coefficients for polynomials
|
|
LOCAL_OBJECT_START(double_cis_pq_k4)
|
|
data8 0x3EC71C963717C63A // P4
|
|
data8 0x3EF9FFBA8F191AE6 // Q4
|
|
data8 0xBF2A01A00F4E11A8 // P3
|
|
data8 0xBF56C16C05AC77BF // Q3
|
|
data8 0x3F8111111110F167 // P2
|
|
data8 0x3FA555555554DD45 // Q2
|
|
data8 0xBFC5555555555555 // P1
|
|
data8 0xBFDFFFFFFFFFFFFC // Q1
|
|
LOCAL_OBJECT_END(double_cis_pq_k4)
|
|
|
|
// Sincos table (S[m], C[m])
|
|
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
|
|
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
|
|
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
|
|
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
|
|
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
|
|
//
|
|
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
|
|
//
|
|
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
|
|
//
|
|
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
|
|
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
|
|
//
|
|
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
|
|
//
|
|
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
|
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
|
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
|
|
//
|
|
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
|
|
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
|
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
|
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
|
|
//
|
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
|
|
//
|
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
|
|
//
|
|
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
|
|
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
|
|
//
|
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
|
|
//
|
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
|
|
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
|
|
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
|
|
//
|
|
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
|
|
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
|
|
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
|
|
|
|
.section .text
|
|
|
|
GLOBAL_IEEE754_ENTRY(sincos)
|
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
{ .mlx
|
|
getf.exp cis_r_signexp = cis_Arg
|
|
movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
|
|
|
}
|
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cis_AD_1 = @ltoff(double_cis_pi), gp
|
|
movl cis_GR_rshf_2to61 = 0x47b8000000000000
|
|
};;
|
|
|
|
{ .mfi
|
|
ld8 cis_AD_1 = [cis_AD_1]
|
|
fnorm.s1 cis_NORM_f8 = cis_Arg
|
|
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
|
|
}
|
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cis_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
br.cond.sptk _CIS_COMMON
|
|
};;
|
|
GLOBAL_IEEE754_END(sincos)
|
|
libm_alias_double_other (__sincos, sincos)
|
|
|
|
GLOBAL_LIBM_ENTRY(__libm_sincos)
|
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
{ .mlx
|
|
getf.exp cis_r_signexp = cis_Arg
|
|
movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
|
}
|
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cis_AD_1 = @ltoff(double_cis_pi), gp
|
|
movl cis_GR_rshf_2to61 = 0x47b8000000000000
|
|
};;
|
|
|
|
// p14 set for __libm_sincos and cis
|
|
{ .mfi
|
|
ld8 cis_AD_1 = [cis_AD_1]
|
|
fnorm.s1 cis_NORM_f8 = cis_Arg
|
|
cmp.eq p14, p13 = r0, r0
|
|
}
|
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cis_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
nop.b 0
|
|
};;
|
|
|
|
_CIS_COMMON:
|
|
// Form two constants we need
|
|
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
|
|
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
|
|
// fcmp used to set denormal, and invalid on snans
|
|
{ .mfi
|
|
setf.sig cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16
|
|
fclass.m p6,p0 = cis_Arg, 0xe7 // if x=0,inf,nan
|
|
addl cis_gr_tmp = -1, r0
|
|
}
|
|
// 1.1000 2^63 for right shift
|
|
{ .mlx
|
|
setf.d cis_RSHF_2TO61 = cis_GR_rshf_2to61
|
|
movl cis_GR_rshf = 0x43e8000000000000
|
|
};;
|
|
|
|
// Form another constant
|
|
// 2^-61 for scaling Nfloat
|
|
// 0x1001a is register_bias + 27.
|
|
// So if f8 >= 2^27, go to large arguments routine
|
|
{ .mfi
|
|
alloc GR_SAVE_PFS = ar.pfs, 3, 5, 0, 0
|
|
fclass.m p11,p0 = cis_Arg, 0x0b // Test for x=unorm
|
|
mov cis_exp_limit = 0x1001a
|
|
}
|
|
{ .mib
|
|
setf.exp cis_2TOM61 = cis_GR_exp_2tom61
|
|
nop.i 0
|
|
(p6) br.cond.spnt _CIS_SPECIAL_ARGS
|
|
};;
|
|
|
|
// Load the two pieces of pi/16
|
|
// Form another constant
|
|
// 1.1000...000 * 2^63, the right shift constant
|
|
{ .mmb
|
|
ldfe cis_Pi_by_16_hi = [cis_AD_1],16
|
|
setf.d cis_RSHF = cis_GR_rshf
|
|
(p11) br.cond.spnt _CIS_UNORM // Branch if x=unorm
|
|
};;
|
|
|
|
_CIS_COMMON2:
|
|
// Return here if x=unorm
|
|
// Create constant inexact set
|
|
{ .mmi
|
|
ldfe cis_Pi_by_16_lo = [cis_AD_1],16
|
|
setf.sig cis_tmp = cis_gr_tmp
|
|
nop.i 0
|
|
};;
|
|
|
|
// Select exponent (17 lsb)
|
|
{ .mfi
|
|
ldfe cis_Pi_by_16_lowest = [cis_AD_1],16
|
|
nop.f 0
|
|
dep.z cis_r_exp = cis_r_signexp, 0, 17
|
|
};;
|
|
|
|
// Start loading P, Q coefficients
|
|
// p10 is true if we must call routines to handle larger arguments
|
|
// p10 is true if f8 exp is > 0x1001a
|
|
{ .mmb
|
|
ldfpd cis_P4,cis_Q4 = [cis_AD_1],16
|
|
cmp.ge p10, p0 = cis_r_exp, cis_exp_limit
|
|
(p10) br.cond.spnt _CIS_LARGE_ARGS // go to |x| >= 2^27 path
|
|
};;
|
|
|
|
// cis_W = x * cis_Inv_Pi_by_16
|
|
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
|
|
// rightmost bits of significand
|
|
{ .mfi
|
|
ldfpd cis_P3,cis_Q3 = [cis_AD_1],16
|
|
fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61
|
|
nop.i 0
|
|
};;
|
|
|
|
// get N = (int)cis_int_Nfloat
|
|
// cis_NFLOAT = Round_Int_Nearest(cis_W)
|
|
{ .mmf
|
|
getf.sig cis_GR_n = cis_W_2TO61_RSH
|
|
ldfpd cis_P2,cis_Q2 = [cis_AD_1],16
|
|
fms.s1 cis_NFLOAT = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF
|
|
};;
|
|
|
|
// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x
|
|
{ .mfi
|
|
ldfpd cis_P1,cis_Q1 = [cis_AD_1], 16
|
|
fnma.s1 cis_r = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8
|
|
nop.i 0
|
|
};;
|
|
|
|
// Add 2^(k-1) (which is in cis_r_sincos) to N
|
|
{ .mmi
|
|
add cis_GR_n_cos = 0x8, cis_GR_n
|
|
;;
|
|
//Get M (least k+1 bits of N)
|
|
and cis_GR_m_sin = 0x1f,cis_GR_n
|
|
and cis_GR_m_cos = 0x1f,cis_GR_n_cos
|
|
};;
|
|
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
shl cis_GR_32m_sin = cis_GR_m_sin,5
|
|
};;
|
|
|
|
// Add 32*M to address of sin_cos_beta table
|
|
// cis_r = cis_r -cis_Nfloat * cis_Pi_by_16_lo
|
|
{ .mfi
|
|
add cis_AD_2_sin = cis_GR_32m_sin, cis_AD_1
|
|
fnma.s1 cis_r = cis_NFLOAT, cis_Pi_by_16_lo, cis_r
|
|
shl cis_GR_32m_cos = cis_GR_m_cos,5
|
|
};;
|
|
|
|
// Add 32*M to address of sin_cos_beta table
|
|
{ .mmf
|
|
ldfe cis_Sm_sin = [cis_AD_2_sin],16
|
|
add cis_AD_2_cos = cis_GR_32m_cos, cis_AD_1
|
|
fclass.m.unc p10,p0 = cis_Arg,0x0b // den. input - uflow
|
|
};;
|
|
|
|
{ .mfi
|
|
ldfe cis_Sm_cos = [cis_AD_2_cos], 16
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
ldfe cis_Cm_sin = [cis_AD_2_sin]
|
|
fma.s1 cis_rsq = cis_r, cis_r, f0 // get r^2
|
|
nop.i 0
|
|
}
|
|
// fmpy forces inexact flag
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s0 cis_tmp = cis_tmp,cis_tmp
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 cis_r_exact = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
ldfe cis_Cm_cos = [cis_AD_2_cos]
|
|
fma.s1 cis_P_temp1 = cis_rsq, cis_P4, cis_P3
|
|
nop.i 0
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_Q_temp1 = cis_rsq, cis_Q4, cis_Q3
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cis_srsq_sin = cis_Sm_sin, cis_rsq
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cis_srsq_cos = cis_Sm_cos,cis_rsq
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_Q_temp2 = cis_rsq, cis_Q_temp1, cis_Q2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_P_temp2 = cis_rsq, cis_P_temp1, cis_P2
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cis_rcub = cis_r_exact, cis_rsq // get r^3
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_Q = cis_rsq, cis_Q_temp2, cis_Q1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_P = cis_rsq, cis_P_temp2, cis_P1
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_Q_sin = cis_srsq_sin,cis_Q, cis_Sm_sin
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_Q_cos = cis_srsq_cos,cis_Q, cis_Sm_cos
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cis_P = cis_rcub,cis_P, cis_r_exact // final P
|
|
nop.i 0
|
|
};;
|
|
|
|
// If den. arg, force underflow to be set
|
|
{ .mfi
|
|
nop.m 0
|
|
(p10) fmpy.d.s0 cis_tmp = cis_Arg,cis_Arg
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.d.s0 cis_Sin_res = cis_Cm_sin,cis_P,cis_Q_sin//Final sin
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.d.s0 cis_Cos_res = cis_Cm_cos,cis_P,cis_Q_cos//Final cos
|
|
(p14) br.ret.sptk b0 // common exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfd [cis_pResSin] = cis_Sin_res
|
|
stfd [cis_pResCos] = cis_Cos_res
|
|
br.ret.sptk b0 // common exit for sincos main path
|
|
};;
|
|
|
|
_CIS_SPECIAL_ARGS:
|
|
// sin(+/-0) = +/-0
|
|
// sin(Inf) = NaN
|
|
// sin(NaN) = NaN
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.d.s0 cis_Sin_res = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
|
|
nop.i 999
|
|
};;
|
|
// cos(+/-0) = 1.0
|
|
// cos(Inf) = NaN
|
|
// cos(NaN) = NaN
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.d.s0 cis_Cos_res = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
|
|
(p14) br.ret.sptk b0 //spec exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfd [cis_pResSin] = cis_Sin_res
|
|
stfd [cis_pResCos] = cis_Cos_res
|
|
br.ret.sptk b0 // common exit for sincos main path
|
|
};;
|
|
|
|
_CIS_UNORM:
|
|
// Here if x=unorm
|
|
{ .mfb
|
|
getf.exp cis_r_signexp = cis_NORM_f8 // Get signexp of x
|
|
fcmp.eq.s0 p11,p0 = cis_Arg, f0 // Dummy op to set denorm
|
|
br.cond.sptk _CIS_COMMON2 // Return to main path
|
|
};;
|
|
|
|
GLOBAL_LIBM_END(__libm_sincos)
|
|
|
|
//// |x| > 2^27 path ///////
|
|
.proc _CIS_LARGE_ARGS
|
|
_CIS_LARGE_ARGS:
|
|
.prologue
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
.save ar.pfs, GR_SAVE_PFS
|
|
mov GR_SAVE_PFS = ar.pfs
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
mov GR_SAVE_GP = gp
|
|
nop.f 0
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0 = b0
|
|
};;
|
|
|
|
.body
|
|
// Call of huge arguments sincos
|
|
{ .mib
|
|
nop.m 0
|
|
mov GR_SAVE_PR = pr
|
|
br.call.sptk b0 = __libm_sincos_large
|
|
};;
|
|
|
|
{ .mfi
|
|
mov gp = GR_SAVE_GP
|
|
nop.f 0
|
|
mov pr = GR_SAVE_PR, 0x1fffe
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
mov b0 = GR_SAVE_B0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.d.s0 cis_Cos_res = cis_Cos_res, f1, f0
|
|
mov ar.pfs = GR_SAVE_PFS
|
|
}
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.d.s0 cis_Sin_res = cis_Sin_res, f1, f0
|
|
(p14) br.ret.sptk b0 // exit for |x| > 2^27 path (__libm_sincos and cis)
|
|
};;
|
|
|
|
{ .mmb
|
|
stfd [cis_pResSin] = cis_Sin_res
|
|
stfd [cis_pResCos] = cis_Cos_res
|
|
br.ret.sptk b0 // exit for sincos |x| > 2^27 path
|
|
};;
|
|
.endp _CIS_LARGE_ARGS
|
|
|
|
.type __libm_sincos_large#,@function
|
|
.global __libm_sincos_large#
|