glibc/sysdeps/i386/fpu/e_acoshl.S
Joseph Myers 913d03c864 Fix acosh (1) in round-downward mode (bug 16927).
According to C99 and C11 Annex F, acosh (1) should be +0 in all
rounding modes.  However, some implementations in glibc wrongly return
-0 in round-downward mode (which is what you get if you end up
computing log1p (-0), via 1 - 1 being -0 in round-downward mode).
This patch fixes the problem implementations, by correcting the test
for an exact 1 value in the ldbl-96 implementation to allow for the
explicit high bit of the mantissa, and by inserting fabs instructions
in the i386 implementations; tests of acosh are duly converted to
ALL_RM_TEST.  I believe all the other sysdeps/ieee754 implementations
are already OK (I haven't checked the ia64 versions, but if buggy then
that will be obvious from the results of test runs after this patch is
in).

Tested x86_64 and x86 and ulps updated accordingly.

	[BZ #16927]
	* sysdeps/i386/fpu/e_acosh.S (__ieee754_acosh): Use fabs on x-1
	value.
	* sysdeps/i386/fpu/e_acoshf.S (__ieee754_acoshf): Likewise.
	* sysdeps/i386/fpu/e_acoshl.S (__ieee754_acoshl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_acoshl.c (__ieee754_acoshl): Correct
	for explicit high bit of mantissa when testing for argument equal
	to 1.
	* math/libm-test.inc (acosh_test): Use ALL_RM_TEST.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-05-14 12:35:40 +00:00

108 lines
3.1 KiB
ArmAsm

/* ix87 specific implementation of arcsinh.
Copyright (C) 1996-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <machine/asm.h>
.section .rodata.cst8,"aM",@progbits,8
.p2align 3
/* Please note that we use double value for 1.0. This number
has an exact representation and so we don't get accuracy
problems. The advantage is that the code is simpler. */
.type one,@object
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
/* It is not important that this constant is precise. It is only
a value which is known to be on the safe side for using the
fyl2xp1 instruction. */
.type limit,@object
limit: .double 0.29
ASM_SIZE_DIRECTIVE(limit)
#ifdef PIC
#define MO(op) op##@GOTOFF(%edx)
#else
#define MO(op) op
#endif
.text
ENTRY(__ieee754_acoshl)
movl 12(%esp), %ecx
andl $0xffff, %ecx
cmpl $0x3fff, %ecx
jl 5f // < 1 => invalid
fldln2 // log(2)
fldt 4(%esp) // x : log(2)
cmpl $0x4020, %ecx
ja 3f // x > 2^34
#ifdef PIC
LOAD_PIC_REG (dx)
#endif
cmpl $0x4000, %ecx
ja 4f // x > 2
// 1 <= x <= 2 => y = log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
fsubl MO(one) // x-1 : log(2)
fabs // acosh(1) is +0 in all rounding modes
fld %st // x-1 : x-1 : log(2)
fmul %st(1) // (x-1)^2 : x-1 : log(2)
fadd %st(1) // x-1+(x-1)^2 : x-1 : log(2)
fadd %st(1) // 2*(x-1)+(x-1)^2 : x-1 : log(2)
fsqrt // sqrt(2*(x-1)+(x-1)^2) : x-1 : log(2)
faddp // x-1+sqrt(2*(x-1)+(x-1)^2) : log(2)
fcoml MO(limit)
fnstsw
sahf
ja 2f
fyl2xp1 // log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
ret
2: faddl MO(one) // x+sqrt(2*(x-1)+(x-1)^2) : log(2)
fyl2x // log(x+sqrt(2*(x-1)+(x-1)^2))
ret
// x > 2^34 => y = log(x) + log(2)
.align ALIGNARG(4)
3: fyl2x // log(x)
fldln2 // log(2) : log(x)
faddp // log(x)+log(2)
ret
// 2^34 > x > 2 => y = log(2*x - 1/(x+sqrt(x*x-1)))
.align ALIGNARG(4)
4: fld %st // x : x : log(2)
fadd %st, %st(1) // x : 2*x : log(2)
fld %st // x : x : 2*x : log(2)
fmul %st(1) // x^2 : x : 2*x : log(2)
fsubl MO(one) // x^2-1 : x : 2*x : log(2)
fsqrt // sqrt(x^2-1) : x : 2*x : log(2)
faddp // x+sqrt(x^2-1) : 2*x : log(2)
fdivrl MO(one) // 1/(x+sqrt(x^2-1)) : 2*x : log(2)
fsubrp // 2*x+1/(x+sqrt(x^2)-1) : log(2)
fyl2x // log(2*x+1/(x+sqrt(x^2-1)))
ret
// x < 1 => NaN
.align ALIGNARG(4)
5: fldz
fdiv %st, %st(0)
ret
END(__ieee754_acoshl)
strong_alias (__ieee754_acoshl, __acoshl_finite)