mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-16 21:54:16 +00:00
75207bde68
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
122 lines
4.7 KiB
C
122 lines
4.7 KiB
C
/* Double-precision vector (AdvSIMD) cbrt function
|
|
|
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
#include "poly_advsimd_f64.h"
|
|
|
|
const static struct data
|
|
{
|
|
float64x2_t poly[4], one_third, shift;
|
|
int64x2_t exp_bias;
|
|
uint64x2_t abs_mask, tiny_bound;
|
|
uint32x4_t thresh;
|
|
double table[5];
|
|
} data = {
|
|
.shift = V2 (0x1.8p52),
|
|
.poly = { /* Generated with fpminimax in [0.5, 1]. */
|
|
V2 (0x1.c14e8ee44767p-2), V2 (0x1.dd2d3f99e4c0ep-1),
|
|
V2 (-0x1.08e83026b7e74p-1), V2 (0x1.2c74eaa3ba428p-3) },
|
|
.exp_bias = V2 (1022),
|
|
.abs_mask = V2(0x7fffffffffffffff),
|
|
.tiny_bound = V2(0x0010000000000000), /* Smallest normal. */
|
|
.thresh = V4(0x7fe00000), /* asuint64 (infinity) - tiny_bound. */
|
|
.one_third = V2(0x1.5555555555555p-2),
|
|
.table = { /* table[i] = 2^((i - 2) / 3). */
|
|
0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0,
|
|
0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0 }
|
|
};
|
|
|
|
#define MantissaMask v_u64 (0x000fffffffffffff)
|
|
|
|
static float64x2_t NOINLINE VPCS_ATTR
|
|
special_case (float64x2_t x, float64x2_t y, uint32x2_t special)
|
|
{
|
|
return v_call_f64 (cbrt, x, y, vmovl_u32 (special));
|
|
}
|
|
|
|
/* Approximation for double-precision vector cbrt(x), using low-order polynomial
|
|
and two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat
|
|
according to the exponent, for instance an error observed for double value
|
|
m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an
|
|
integer.
|
|
__v_cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0
|
|
want 0x1.965fe72821e99p+0. */
|
|
VPCS_ATTR float64x2_t V_NAME_D1 (cbrt) (float64x2_t x)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x));
|
|
|
|
/* Subnormal, +/-0 and special values. */
|
|
uint32x2_t special
|
|
= vcge_u32 (vsubhn_u64 (iax, d->tiny_bound), vget_low_u32 (d->thresh));
|
|
|
|
/* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector
|
|
version of frexp, which gets subnormal values wrong - these have to be
|
|
special-cased as a result. */
|
|
float64x2_t m = vbslq_f64 (MantissaMask, x, v_f64 (0.5));
|
|
int64x2_t exp_bias = d->exp_bias;
|
|
uint64x2_t ia12 = vshrq_n_u64 (iax, 52);
|
|
int64x2_t e = vsubq_s64 (vreinterpretq_s64_u64 (ia12), exp_bias);
|
|
|
|
/* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for
|
|
Newton iterations. */
|
|
float64x2_t p = v_pairwise_poly_3_f64 (m, vmulq_f64 (m, m), d->poly);
|
|
float64x2_t one_third = d->one_third;
|
|
/* Two iterations of Newton's method for iteratively approximating cbrt. */
|
|
float64x2_t m_by_3 = vmulq_f64 (m, one_third);
|
|
float64x2_t two_thirds = vaddq_f64 (one_third, one_third);
|
|
float64x2_t a
|
|
= vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (p, p)), two_thirds, p);
|
|
a = vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (a, a)), two_thirds, a);
|
|
|
|
/* Assemble the result by the following:
|
|
|
|
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
|
|
|
|
We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is
|
|
not necessarily a multiple of 3 we lose some information.
|
|
|
|
Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q.
|
|
|
|
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is
|
|
an integer in [-2, 2], and can be looked up in the table T. Hence the
|
|
result is assembled as:
|
|
|
|
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */
|
|
|
|
float64x2_t ef = vcvtq_f64_s64 (e);
|
|
float64x2_t eb3f = vrndnq_f64 (vmulq_f64 (ef, one_third));
|
|
int64x2_t em3 = vcvtq_s64_f64 (vfmsq_f64 (ef, eb3f, v_f64 (3)));
|
|
int64x2_t ey = vcvtq_s64_f64 (eb3f);
|
|
|
|
float64x2_t my = (float64x2_t){ d->table[em3[0] + 2], d->table[em3[1] + 2] };
|
|
my = vmulq_f64 (my, a);
|
|
|
|
/* Vector version of ldexp. */
|
|
float64x2_t y = vreinterpretq_f64_s64 (
|
|
vshlq_n_s64 (vaddq_s64 (ey, vaddq_s64 (exp_bias, v_s64 (1))), 52));
|
|
y = vmulq_f64 (y, my);
|
|
|
|
if (__glibc_unlikely (v_any_u32h (special)))
|
|
return special_case (x, vbslq_f64 (d->abs_mask, y, x), special);
|
|
|
|
/* Copy sign. */
|
|
return vbslq_f64 (d->abs_mask, y, x);
|
|
}
|