glibc/math/s_ccosh_template.c
Paul E. Murphy 01ee387015 Convert _Complex cosine functions to generated code
This is fairly straight fowards.  m68k overrides are
updated to use the framework, and thus are simplified
a bit.
2016-08-19 11:28:55 -05:00

149 lines
3.6 KiB
C

/* Complex cosine hyperbolic function for float types.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__ccosh) (CFLOAT x)
{
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (M_FABS (__real__ x) > t)
{
FLOAT exp_t = M_EXP (t);
FLOAT rx = M_FABS (__real__ x);
if (signbit (__real__ x))
sinix = -sinix;
rx -= t;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
FLOAT exp_val = M_EXP (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = M_COSH (__real__ x) * cosix;
__imag__ retval = M_SINH (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
__imag__ retval = __real__ x == 0 ? 0 : M_NAN;
__real__ retval = M_NAN + M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
__imag__ retval = (M_COPYSIGN (M_HUGE_VAL, sinix)
* M_COPYSIGN (1, __real__ x));
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x * M_COPYSIGN (1, __real__ x);
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = M_HUGE_VAL;
__imag__ retval = M_NAN + M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
__real__ retval = M_NAN;
__imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
}
return retval;
}
declare_mgen_alias (__ccosh, ccosh);
#if M_LIBM_NEED_COMPAT (carg)
declare_mgen_libm_compat (__ccosh, ccosh)
#endif