mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-15 21:40:05 +00:00
4918e5f4cd
The Bessel functions of the second type (Yn) should raise the "divide by zero" exception when input is zero (both positive and negative). Current code gives the right output, but fails to set the exception. This error is exposed for float, double, and long double when linking with -lieee. Without this flag, the error is not exposed, because the wrappers for these functions, which use __kernel_standard functionality, set the exception as expected. Tested for powerpc64le. [BZ #21134] * sysdeps/ieee754/dbl-64/e_j0.c (__ieee754_y0): Raise the "divide by zero" exception when the input is zero. * sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_y1): Likewise. * sysdeps/ieee754/flt-32/e_j0f.c (__ieee754_y0f): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_y1f): Likewise. * sysdeps/ieee754/ldbl-128/e_j0l.c (__ieee754_y0l): Likewise. * sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_y1l): Likewise.
338 lines
10 KiB
C
338 lines
10 KiB
C
/* e_j0f.c -- float version of e_j0.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static float pzerof(float), qzerof(float);
|
|
|
|
static const float
|
|
huge = 1e30,
|
|
one = 1.0,
|
|
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
|
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
|
/* R0/S0 on [0, 2.00] */
|
|
R02 = 1.5625000000e-02, /* 0x3c800000 */
|
|
R03 = -1.8997929874e-04, /* 0xb947352e */
|
|
R04 = 1.8295404516e-06, /* 0x35f58e88 */
|
|
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
|
|
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
|
|
S02 = 1.1692678527e-04, /* 0x38f53697 */
|
|
S03 = 5.1354652442e-07, /* 0x3509daa6 */
|
|
S04 = 1.1661400734e-09; /* 0x30a045e8 */
|
|
|
|
static const float zero = 0.0;
|
|
|
|
float
|
|
__ieee754_j0f(float x)
|
|
{
|
|
float z, s,c,ss,cc,r,u,v;
|
|
int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x7f800000) return one/(x*x);
|
|
x = fabsf(x);
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
__sincosf (x, &s, &c);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
|
z = -__cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<0x39000000) { /* |x| < 2**-13 */
|
|
math_force_eval(huge+x); /* raise inexact if x != 0 */
|
|
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
|
else return one - (float)0.25*x*x;
|
|
}
|
|
z = x*x;
|
|
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
|
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
|
if(ix < 0x3F800000) { /* |x| < 1.00 */
|
|
return one + z*((float)-0.25+(r/s));
|
|
} else {
|
|
u = (float)0.5*x;
|
|
return((one+u)*(one-u)+z*(r/s));
|
|
}
|
|
}
|
|
strong_alias (__ieee754_j0f, __j0f_finite)
|
|
|
|
static const float
|
|
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
|
|
u01 = 1.7666645348e-01, /* 0x3e34e80d */
|
|
u02 = -1.3818567619e-02, /* 0xbc626746 */
|
|
u03 = 3.4745343146e-04, /* 0x39b62a69 */
|
|
u04 = -3.8140706238e-06, /* 0xb67ff53c */
|
|
u05 = 1.9559013964e-08, /* 0x32a802ba */
|
|
u06 = -3.9820518410e-11, /* 0xae2f21eb */
|
|
v01 = 1.2730483897e-02, /* 0x3c509385 */
|
|
v02 = 7.6006865129e-05, /* 0x389f65e0 */
|
|
v03 = 2.5915085189e-07, /* 0x348b216c */
|
|
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
|
|
|
float
|
|
__ieee754_y0f(float x)
|
|
{
|
|
float z, s,c,ss,cc,u,v;
|
|
int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = 0x7fffffff&hx;
|
|
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf. */
|
|
if(ix>=0x7f800000) return one/(x+x*x);
|
|
if(ix==0) return -1/zero; /* -inf and divide by zero exception. */
|
|
if(hx<0) return zero/(zero*x);
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
|
* where x0 = x-pi/4
|
|
* Better formula:
|
|
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
|
* = 1/sqrt(2) * (sin(x) + cos(x))
|
|
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
* To avoid cancellation, use
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
* to compute the worse one.
|
|
*/
|
|
__sincosf (x, &s, &c);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
|
z = -__cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<=0x39800000) { /* x < 2**-13 */
|
|
return(u00 + tpi*__ieee754_logf(x));
|
|
}
|
|
z = x*x;
|
|
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
|
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
|
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
|
|
}
|
|
strong_alias (__ieee754_y0f, __y0f_finite)
|
|
|
|
/* The asymptotic expansions of pzero is
|
|
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
|
* For x >= 2, We approximate pzero by
|
|
* pzero(x) = 1 + (R/S)
|
|
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
|
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
|
* and
|
|
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
|
*/
|
|
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
-7.0312500000e-02, /* 0xbd900000 */
|
|
-8.0816707611e+00, /* 0xc1014e86 */
|
|
-2.5706311035e+02, /* 0xc3808814 */
|
|
-2.4852163086e+03, /* 0xc51b5376 */
|
|
-5.2530439453e+03, /* 0xc5a4285a */
|
|
};
|
|
static const float pS8[5] = {
|
|
1.1653436279e+02, /* 0x42e91198 */
|
|
3.8337448730e+03, /* 0x456f9beb */
|
|
4.0597855469e+04, /* 0x471e95db */
|
|
1.1675296875e+05, /* 0x47e4087c */
|
|
4.7627726562e+04, /* 0x473a0bba */
|
|
};
|
|
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
-1.1412546255e-11, /* 0xad48c58a */
|
|
-7.0312492549e-02, /* 0xbd8fffff */
|
|
-4.1596107483e+00, /* 0xc0851b88 */
|
|
-6.7674766541e+01, /* 0xc287597b */
|
|
-3.3123129272e+02, /* 0xc3a59d9b */
|
|
-3.4643338013e+02, /* 0xc3ad3779 */
|
|
};
|
|
static const float pS5[5] = {
|
|
6.0753936768e+01, /* 0x42730408 */
|
|
1.0512523193e+03, /* 0x44836813 */
|
|
5.9789707031e+03, /* 0x45bad7c4 */
|
|
9.6254453125e+03, /* 0x461665c8 */
|
|
2.4060581055e+03, /* 0x451660ee */
|
|
};
|
|
|
|
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
-2.5470459075e-09, /* 0xb12f081b */
|
|
-7.0311963558e-02, /* 0xbd8fffb8 */
|
|
-2.4090321064e+00, /* 0xc01a2d95 */
|
|
-2.1965976715e+01, /* 0xc1afba52 */
|
|
-5.8079170227e+01, /* 0xc2685112 */
|
|
-3.1447946548e+01, /* 0xc1fb9565 */
|
|
};
|
|
static const float pS3[5] = {
|
|
3.5856033325e+01, /* 0x420f6c94 */
|
|
3.6151397705e+02, /* 0x43b4c1ca */
|
|
1.1936077881e+03, /* 0x44953373 */
|
|
1.1279968262e+03, /* 0x448cffe6 */
|
|
1.7358093262e+02, /* 0x432d94b8 */
|
|
};
|
|
|
|
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
-8.8753431271e-08, /* 0xb3be98b7 */
|
|
-7.0303097367e-02, /* 0xbd8ffb12 */
|
|
-1.4507384300e+00, /* 0xbfb9b1cc */
|
|
-7.6356959343e+00, /* 0xc0f4579f */
|
|
-1.1193166733e+01, /* 0xc1331736 */
|
|
-3.2336456776e+00, /* 0xc04ef40d */
|
|
};
|
|
static const float pS2[5] = {
|
|
2.2220300674e+01, /* 0x41b1c32d */
|
|
1.3620678711e+02, /* 0x430834f0 */
|
|
2.7047027588e+02, /* 0x43873c32 */
|
|
1.5387539673e+02, /* 0x4319e01a */
|
|
1.4657617569e+01, /* 0x416a859a */
|
|
};
|
|
|
|
static float
|
|
pzerof(float x)
|
|
{
|
|
const float *p,*q;
|
|
float z,r,s;
|
|
int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
/* ix >= 0x40000000 for all calls to this function. */
|
|
if(ix>=0x41000000) {p = pR8; q= pS8;}
|
|
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
|
|
else if(ix>=0x4036db68){p = pR3; q= pS3;}
|
|
else {p = pR2; q= pS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
|
return one+ r/s;
|
|
}
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of qzero is
|
|
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
|
* We approximate pzero by
|
|
* qzero(x) = s*(-1.25 + (R/S))
|
|
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
|
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
|
* and
|
|
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
|
*/
|
|
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
7.3242187500e-02, /* 0x3d960000 */
|
|
1.1768206596e+01, /* 0x413c4a93 */
|
|
5.5767340088e+02, /* 0x440b6b19 */
|
|
8.8591972656e+03, /* 0x460a6cca */
|
|
3.7014625000e+04, /* 0x471096a0 */
|
|
};
|
|
static const float qS8[6] = {
|
|
1.6377603149e+02, /* 0x4323c6aa */
|
|
8.0983447266e+03, /* 0x45fd12c2 */
|
|
1.4253829688e+05, /* 0x480b3293 */
|
|
8.0330925000e+05, /* 0x49441ed4 */
|
|
8.4050156250e+05, /* 0x494d3359 */
|
|
-3.4389928125e+05, /* 0xc8a7eb69 */
|
|
};
|
|
|
|
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
1.8408595828e-11, /* 0x2da1ec79 */
|
|
7.3242180049e-02, /* 0x3d95ffff */
|
|
5.8356351852e+00, /* 0x40babd86 */
|
|
1.3511157227e+02, /* 0x43071c90 */
|
|
1.0272437744e+03, /* 0x448067cd */
|
|
1.9899779053e+03, /* 0x44f8bf4b */
|
|
};
|
|
static const float qS5[6] = {
|
|
8.2776611328e+01, /* 0x42a58da0 */
|
|
2.0778142090e+03, /* 0x4501dd07 */
|
|
1.8847289062e+04, /* 0x46933e94 */
|
|
5.6751113281e+04, /* 0x475daf1d */
|
|
3.5976753906e+04, /* 0x470c88c1 */
|
|
-5.3543427734e+03, /* 0xc5a752be */
|
|
};
|
|
|
|
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
4.3774099900e-09, /* 0x3196681b */
|
|
7.3241114616e-02, /* 0x3d95ff70 */
|
|
3.3442313671e+00, /* 0x405607e3 */
|
|
4.2621845245e+01, /* 0x422a7cc5 */
|
|
1.7080809021e+02, /* 0x432acedf */
|
|
1.6673394775e+02, /* 0x4326bbe4 */
|
|
};
|
|
static const float qS3[6] = {
|
|
4.8758872986e+01, /* 0x42430916 */
|
|
7.0968920898e+02, /* 0x44316c1c */
|
|
3.7041481934e+03, /* 0x4567825f */
|
|
6.4604252930e+03, /* 0x45c9e367 */
|
|
2.5163337402e+03, /* 0x451d4557 */
|
|
-1.4924745178e+02, /* 0xc3153f59 */
|
|
};
|
|
|
|
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
1.5044444979e-07, /* 0x342189db */
|
|
7.3223426938e-02, /* 0x3d95f62a */
|
|
1.9981917143e+00, /* 0x3fffc4bf */
|
|
1.4495602608e+01, /* 0x4167edfd */
|
|
3.1666231155e+01, /* 0x41fd5471 */
|
|
1.6252708435e+01, /* 0x4182058c */
|
|
};
|
|
static const float qS2[6] = {
|
|
3.0365585327e+01, /* 0x41f2ecb8 */
|
|
2.6934811401e+02, /* 0x4386ac8f */
|
|
8.4478375244e+02, /* 0x44533229 */
|
|
8.8293585205e+02, /* 0x445cbbe5 */
|
|
2.1266638184e+02, /* 0x4354aa98 */
|
|
-5.3109550476e+00, /* 0xc0a9f358 */
|
|
};
|
|
|
|
static float
|
|
qzerof(float x)
|
|
{
|
|
const float *p,*q;
|
|
float s,r,z;
|
|
int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
/* ix >= 0x40000000 for all calls to this function. */
|
|
if(ix>=0x41000000) {p = qR8; q= qS8;}
|
|
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
|
|
else if(ix>=0x4036db68){p = qR3; q= qS3;}
|
|
else {p = qR2; q= qS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
|
return (-(float).125 + r/s)/x;
|
|
}
|