mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 14:00:30 +00:00
693 lines
21 KiB
C
693 lines
21 KiB
C
/* Skeleton for a conversion module.
|
|
Copyright (C) 1998-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/* This file can be included to provide definitions of several things
|
|
many modules have in common. It can be customized using the following
|
|
macros:
|
|
|
|
DEFINE_INIT define the default initializer. This requires the
|
|
following symbol to be defined.
|
|
|
|
CHARSET_NAME string with official name of the coded character
|
|
set (in all-caps)
|
|
|
|
DEFINE_FINI define the default destructor function.
|
|
|
|
MIN_NEEDED_FROM minimal number of bytes needed for the from-charset.
|
|
MIN_NEEDED_TO likewise for the to-charset.
|
|
|
|
MAX_NEEDED_FROM maximal number of bytes needed for the from-charset.
|
|
This macro is optional, it defaults to MIN_NEEDED_FROM.
|
|
MAX_NEEDED_TO likewise for the to-charset.
|
|
|
|
FROM_LOOP_MIN_NEEDED_FROM
|
|
FROM_LOOP_MAX_NEEDED_FROM
|
|
minimal/maximal number of bytes needed on input
|
|
of one round through the FROM_LOOP. Defaults
|
|
to MIN_NEEDED_FROM and MAX_NEEDED_FROM, respectively.
|
|
FROM_LOOP_MIN_NEEDED_TO
|
|
FROM_LOOP_MAX_NEEDED_TO
|
|
minimal/maximal number of bytes needed on output
|
|
of one round through the FROM_LOOP. Defaults
|
|
to MIN_NEEDED_TO and MAX_NEEDED_TO, respectively.
|
|
TO_LOOP_MIN_NEEDED_FROM
|
|
TO_LOOP_MAX_NEEDED_FROM
|
|
minimal/maximal number of bytes needed on input
|
|
of one round through the TO_LOOP. Defaults
|
|
to MIN_NEEDED_TO and MAX_NEEDED_TO, respectively.
|
|
TO_LOOP_MIN_NEEDED_TO
|
|
TO_LOOP_MAX_NEEDED_TO
|
|
minimal/maximal number of bytes needed on output
|
|
of one round through the TO_LOOP. Defaults
|
|
to MIN_NEEDED_FROM and MAX_NEEDED_FROM, respectively.
|
|
|
|
FROM_DIRECTION this macro is supposed to return a value != 0
|
|
if we convert from the current character set,
|
|
otherwise it return 0.
|
|
|
|
EMIT_SHIFT_TO_INIT this symbol is optional. If it is defined it
|
|
defines some code which writes out a sequence
|
|
of bytes which bring the current state into
|
|
the initial state.
|
|
|
|
FROM_LOOP name of the function implementing the conversion
|
|
from the current character set.
|
|
TO_LOOP likewise for the other direction
|
|
|
|
ONE_DIRECTION optional. If defined to 1, only one conversion
|
|
direction is defined instead of two. In this
|
|
case, FROM_DIRECTION should be defined to 1, and
|
|
FROM_LOOP and TO_LOOP should have the same value.
|
|
|
|
SAVE_RESET_STATE in case of an error we must reset the state for
|
|
the rerun so this macro must be defined for
|
|
stateful encodings. It takes an argument which
|
|
is nonzero when saving.
|
|
|
|
RESET_INPUT_BUFFER If the input character sets allow this the macro
|
|
can be defined to reset the input buffer pointers
|
|
to cover only those characters up to the error.
|
|
Note that if the conversion has skipped over
|
|
irreversible characters (due to
|
|
__GCONV_IGNORE_ERRORS) there is no longer a direct
|
|
correspondence between input and output pointers,
|
|
and this macro is not called.
|
|
|
|
FUNCTION_NAME if not set the conversion function is named `gconv'.
|
|
|
|
PREPARE_LOOP optional code preparing the conversion loop. Can
|
|
contain variable definitions.
|
|
END_LOOP also optional, may be used to store information
|
|
|
|
EXTRA_LOOP_ARGS optional macro specifying extra arguments passed
|
|
to loop function.
|
|
|
|
STORE_REST optional, needed only when MAX_NEEDED_FROM > 4.
|
|
This macro stores the seen but unconverted input bytes
|
|
in the state.
|
|
|
|
FROM_ONEBYTE optional. If defined, should be the name of a
|
|
specialized conversion function for a single byte
|
|
from the current character set to INTERNAL. This
|
|
function has prototype
|
|
wint_t
|
|
FROM_ONEBYTE (struct __gconv_step *, unsigned char);
|
|
and does a special conversion:
|
|
- The input is a single byte.
|
|
- The output is a single uint32_t.
|
|
- The state before the conversion is the initial state;
|
|
the state after the conversion is irrelevant.
|
|
- No transliteration.
|
|
- __invocation_counter = 0.
|
|
- __internal_use = 1.
|
|
- do_flush = 0.
|
|
|
|
Modules can use mbstate_t to store conversion state as follows:
|
|
|
|
* Bits 2..0 of '__count' contain the number of lookahead input bytes
|
|
stored in __value.__wchb. Always zero if the converter never
|
|
returns __GCONV_INCOMPLETE_INPUT.
|
|
|
|
* Bits 31..3 of '__count' are module dependent shift state.
|
|
|
|
* __value: When STORE_REST/UNPACK_BYTES aren't defined and when the
|
|
converter has returned __GCONV_INCOMPLETE_INPUT, this contains
|
|
at most 4 lookahead bytes. Converters with an mb_cur_max > 4
|
|
(currently only UTF-8) must find a way to store their state
|
|
in __value.__wch and define STORE_REST/UNPACK_BYTES appropriately.
|
|
|
|
When __value contains lookahead, __count must not be zero, because
|
|
the converter is not in the initial state then, and mbsinit() --
|
|
defined as a (__count == 0) test -- must reflect this.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <iconv/gconv_int.h>
|
|
#include <string.h>
|
|
#define __need_size_t
|
|
#define __need_NULL
|
|
#include <stddef.h>
|
|
|
|
#ifndef STATIC_GCONV
|
|
# include <dlfcn.h>
|
|
#endif
|
|
|
|
#include <pointer_guard.h>
|
|
#include <stdint.h>
|
|
|
|
#ifndef DL_CALL_FCT
|
|
# define DL_CALL_FCT(fct, args) fct args
|
|
#endif
|
|
|
|
/* The direction objects. */
|
|
#if DEFINE_INIT
|
|
# ifndef FROM_DIRECTION
|
|
# define FROM_DIRECTION_VAL NULL
|
|
# define TO_DIRECTION_VAL ((void *) ~((uintptr_t) 0))
|
|
# define FROM_DIRECTION (step->__data == FROM_DIRECTION_VAL)
|
|
# endif
|
|
#else
|
|
# ifndef FROM_DIRECTION
|
|
# error "FROM_DIRECTION must be provided if non-default init is used"
|
|
# endif
|
|
#endif
|
|
|
|
/* How many bytes are needed at most for the from-charset. */
|
|
#ifndef MAX_NEEDED_FROM
|
|
# define MAX_NEEDED_FROM MIN_NEEDED_FROM
|
|
#endif
|
|
|
|
/* Same for the to-charset. */
|
|
#ifndef MAX_NEEDED_TO
|
|
# define MAX_NEEDED_TO MIN_NEEDED_TO
|
|
#endif
|
|
|
|
/* Defaults for the per-direction min/max constants. */
|
|
#ifndef FROM_LOOP_MIN_NEEDED_FROM
|
|
# define FROM_LOOP_MIN_NEEDED_FROM MIN_NEEDED_FROM
|
|
#endif
|
|
#ifndef FROM_LOOP_MAX_NEEDED_FROM
|
|
# define FROM_LOOP_MAX_NEEDED_FROM MAX_NEEDED_FROM
|
|
#endif
|
|
#ifndef FROM_LOOP_MIN_NEEDED_TO
|
|
# define FROM_LOOP_MIN_NEEDED_TO MIN_NEEDED_TO
|
|
#endif
|
|
#ifndef FROM_LOOP_MAX_NEEDED_TO
|
|
# define FROM_LOOP_MAX_NEEDED_TO MAX_NEEDED_TO
|
|
#endif
|
|
#ifndef TO_LOOP_MIN_NEEDED_FROM
|
|
# define TO_LOOP_MIN_NEEDED_FROM MIN_NEEDED_TO
|
|
#endif
|
|
#ifndef TO_LOOP_MAX_NEEDED_FROM
|
|
# define TO_LOOP_MAX_NEEDED_FROM MAX_NEEDED_TO
|
|
#endif
|
|
#ifndef TO_LOOP_MIN_NEEDED_TO
|
|
# define TO_LOOP_MIN_NEEDED_TO MIN_NEEDED_FROM
|
|
#endif
|
|
#ifndef TO_LOOP_MAX_NEEDED_TO
|
|
# define TO_LOOP_MAX_NEEDED_TO MAX_NEEDED_FROM
|
|
#endif
|
|
|
|
|
|
/* For conversions from a fixed width character set to another fixed width
|
|
character set we can define RESET_INPUT_BUFFER in a very fast way. */
|
|
#if !defined RESET_INPUT_BUFFER && !defined SAVE_RESET_STATE
|
|
# if FROM_LOOP_MIN_NEEDED_FROM == FROM_LOOP_MAX_NEEDED_FROM \
|
|
&& FROM_LOOP_MIN_NEEDED_TO == FROM_LOOP_MAX_NEEDED_TO \
|
|
&& TO_LOOP_MIN_NEEDED_FROM == TO_LOOP_MAX_NEEDED_FROM \
|
|
&& TO_LOOP_MIN_NEEDED_TO == TO_LOOP_MAX_NEEDED_TO
|
|
/* We have to use these `if's here since the compiler cannot know that
|
|
(outbuf - outerr) is always divisible by FROM/TO_LOOP_MIN_NEEDED_TO.
|
|
The ?:1 avoids division by zero warnings that gcc 3.2 emits even for
|
|
obviously unreachable code. */
|
|
# define RESET_INPUT_BUFFER \
|
|
if (FROM_DIRECTION) \
|
|
{ \
|
|
if (FROM_LOOP_MIN_NEEDED_FROM % FROM_LOOP_MIN_NEEDED_TO == 0) \
|
|
*inptrp -= (outbuf - outerr) \
|
|
* (FROM_LOOP_MIN_NEEDED_FROM / FROM_LOOP_MIN_NEEDED_TO); \
|
|
else if (FROM_LOOP_MIN_NEEDED_TO % FROM_LOOP_MIN_NEEDED_FROM == 0) \
|
|
*inptrp -= (outbuf - outerr) \
|
|
/ (FROM_LOOP_MIN_NEEDED_TO / FROM_LOOP_MIN_NEEDED_FROM \
|
|
? : 1); \
|
|
else \
|
|
*inptrp -= ((outbuf - outerr) / FROM_LOOP_MIN_NEEDED_TO) \
|
|
* FROM_LOOP_MIN_NEEDED_FROM; \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (TO_LOOP_MIN_NEEDED_FROM % TO_LOOP_MIN_NEEDED_TO == 0) \
|
|
*inptrp -= (outbuf - outerr) \
|
|
* (TO_LOOP_MIN_NEEDED_FROM / TO_LOOP_MIN_NEEDED_TO); \
|
|
else if (TO_LOOP_MIN_NEEDED_TO % TO_LOOP_MIN_NEEDED_FROM == 0) \
|
|
*inptrp -= (outbuf - outerr) \
|
|
/ (TO_LOOP_MIN_NEEDED_TO / TO_LOOP_MIN_NEEDED_FROM ? : 1); \
|
|
else \
|
|
*inptrp -= ((outbuf - outerr) / TO_LOOP_MIN_NEEDED_TO) \
|
|
* TO_LOOP_MIN_NEEDED_FROM; \
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/* The default init function. It simply matches the name and initializes
|
|
the step data to point to one of the objects above. */
|
|
#if DEFINE_INIT
|
|
# ifndef CHARSET_NAME
|
|
# error "CHARSET_NAME not defined"
|
|
# endif
|
|
|
|
extern int gconv_init (struct __gconv_step *step);
|
|
int
|
|
gconv_init (struct __gconv_step *step)
|
|
{
|
|
/* Determine which direction. */
|
|
if (strcmp (step->__from_name, CHARSET_NAME) == 0)
|
|
{
|
|
step->__data = FROM_DIRECTION_VAL;
|
|
|
|
step->__min_needed_from = FROM_LOOP_MIN_NEEDED_FROM;
|
|
step->__max_needed_from = FROM_LOOP_MAX_NEEDED_FROM;
|
|
step->__min_needed_to = FROM_LOOP_MIN_NEEDED_TO;
|
|
step->__max_needed_to = FROM_LOOP_MAX_NEEDED_TO;
|
|
|
|
#ifdef FROM_ONEBYTE
|
|
step->__btowc_fct = FROM_ONEBYTE;
|
|
#endif
|
|
}
|
|
else if (__builtin_expect (strcmp (step->__to_name, CHARSET_NAME), 0) == 0)
|
|
{
|
|
step->__data = TO_DIRECTION_VAL;
|
|
|
|
step->__min_needed_from = TO_LOOP_MIN_NEEDED_FROM;
|
|
step->__max_needed_from = TO_LOOP_MAX_NEEDED_FROM;
|
|
step->__min_needed_to = TO_LOOP_MIN_NEEDED_TO;
|
|
step->__max_needed_to = TO_LOOP_MAX_NEEDED_TO;
|
|
}
|
|
else
|
|
return __GCONV_NOCONV;
|
|
|
|
#ifdef SAVE_RESET_STATE
|
|
step->__stateful = 1;
|
|
#else
|
|
step->__stateful = 0;
|
|
#endif
|
|
|
|
return __GCONV_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* The default destructor function does nothing in the moment and so
|
|
we don't define it at all. But we still provide the macro just in
|
|
case we need it some day. */
|
|
#if DEFINE_FINI
|
|
#endif
|
|
|
|
|
|
/* If no arguments have to passed to the loop function define the macro
|
|
as empty. */
|
|
#ifndef EXTRA_LOOP_ARGS
|
|
# define EXTRA_LOOP_ARGS
|
|
#endif
|
|
|
|
|
|
/* This is the actual conversion function. */
|
|
#ifndef FUNCTION_NAME
|
|
# define FUNCTION_NAME gconv
|
|
#endif
|
|
|
|
/* The macros are used to access the function to convert single characters. */
|
|
#define SINGLE(fct) SINGLE2 (fct)
|
|
#define SINGLE2(fct) fct##_single
|
|
|
|
|
|
extern int FUNCTION_NAME (struct __gconv_step *step,
|
|
struct __gconv_step_data *data,
|
|
const unsigned char **inptrp,
|
|
const unsigned char *inend,
|
|
unsigned char **outbufstart, size_t *irreversible,
|
|
int do_flush, int consume_incomplete);
|
|
int
|
|
FUNCTION_NAME (struct __gconv_step *step, struct __gconv_step_data *data,
|
|
const unsigned char **inptrp, const unsigned char *inend,
|
|
unsigned char **outbufstart, size_t *irreversible, int do_flush,
|
|
int consume_incomplete)
|
|
{
|
|
struct __gconv_step *next_step = step + 1;
|
|
struct __gconv_step_data *next_data = data + 1;
|
|
__gconv_fct fct = NULL;
|
|
int status;
|
|
|
|
if ((data->__flags & __GCONV_IS_LAST) == 0)
|
|
{
|
|
fct = next_step->__fct;
|
|
if (next_step->__shlib_handle != NULL)
|
|
PTR_DEMANGLE (fct);
|
|
}
|
|
|
|
/* If the function is called with no input this means we have to reset
|
|
to the initial state. The possibly partly converted input is
|
|
dropped. */
|
|
if (__glibc_unlikely (do_flush))
|
|
{
|
|
/* This should never happen during error handling. */
|
|
assert (outbufstart == NULL);
|
|
|
|
status = __GCONV_OK;
|
|
|
|
#ifdef EMIT_SHIFT_TO_INIT
|
|
if (do_flush == 1)
|
|
{
|
|
/* We preserve the initial values of the pointer variables. */
|
|
unsigned char *outbuf = data->__outbuf;
|
|
unsigned char *outstart = outbuf;
|
|
unsigned char *outend = data->__outbufend;
|
|
|
|
# ifdef PREPARE_LOOP
|
|
PREPARE_LOOP
|
|
# endif
|
|
|
|
# ifdef SAVE_RESET_STATE
|
|
SAVE_RESET_STATE (1);
|
|
# endif
|
|
|
|
/* Emit the escape sequence to reset the state. */
|
|
EMIT_SHIFT_TO_INIT;
|
|
|
|
/* Call the steps down the chain if there are any but only if we
|
|
successfully emitted the escape sequence. This should only
|
|
fail if the output buffer is full. If the input is invalid
|
|
it should be discarded since the user wants to start from a
|
|
clean state. */
|
|
if (status == __GCONV_OK)
|
|
{
|
|
if (data->__flags & __GCONV_IS_LAST)
|
|
/* Store information about how many bytes are available. */
|
|
data->__outbuf = outbuf;
|
|
else
|
|
{
|
|
/* Write out all output which was produced. */
|
|
if (outbuf > outstart)
|
|
{
|
|
const unsigned char *outerr = outstart;
|
|
int result;
|
|
|
|
result = DL_CALL_FCT (fct, (next_step, next_data,
|
|
&outerr, outbuf, NULL,
|
|
irreversible, 0,
|
|
consume_incomplete));
|
|
|
|
if (result != __GCONV_EMPTY_INPUT)
|
|
{
|
|
if (__glibc_unlikely (outerr != outbuf))
|
|
{
|
|
/* We have a problem. Undo the conversion. */
|
|
outbuf = outstart;
|
|
|
|
/* Restore the state. */
|
|
# ifdef SAVE_RESET_STATE
|
|
SAVE_RESET_STATE (0);
|
|
# endif
|
|
}
|
|
|
|
/* Change the status. */
|
|
status = result;
|
|
}
|
|
}
|
|
|
|
if (status == __GCONV_OK)
|
|
/* Now flush the remaining steps. */
|
|
status = DL_CALL_FCT (fct, (next_step, next_data, NULL,
|
|
NULL, NULL, irreversible, 1,
|
|
consume_incomplete));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Clear the state object. There might be bytes in there from
|
|
previous calls with CONSUME_INCOMPLETE == 1. But don't emit
|
|
escape sequences. */
|
|
memset (data->__statep, '\0', sizeof (*data->__statep));
|
|
|
|
if (! (data->__flags & __GCONV_IS_LAST))
|
|
/* Now flush the remaining steps. */
|
|
status = DL_CALL_FCT (fct, (next_step, next_data, NULL, NULL,
|
|
NULL, irreversible, do_flush,
|
|
consume_incomplete));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We preserve the initial values of the pointer variables,
|
|
but only some conversion modules need it. */
|
|
const unsigned char *inptr __attribute__ ((__unused__)) = *inptrp;
|
|
unsigned char *outbuf = (__builtin_expect (outbufstart == NULL, 1)
|
|
? data->__outbuf : *outbufstart);
|
|
unsigned char *outend = data->__outbufend;
|
|
unsigned char *outstart;
|
|
/* This variable is used to count the number of characters we
|
|
actually converted. */
|
|
size_t lirreversible = 0;
|
|
size_t *lirreversiblep = irreversible ? &lirreversible : NULL;
|
|
|
|
#ifdef PREPARE_LOOP
|
|
PREPARE_LOOP
|
|
#endif
|
|
|
|
#if FROM_LOOP_MAX_NEEDED_FROM > 1 || TO_LOOP_MAX_NEEDED_FROM > 1
|
|
/* If the function is used to implement the mb*towc*() or wc*tomb*()
|
|
functions we must test whether any bytes from the last call are
|
|
stored in the `state' object. */
|
|
if (((FROM_LOOP_MAX_NEEDED_FROM > 1 && TO_LOOP_MAX_NEEDED_FROM > 1)
|
|
|| (FROM_LOOP_MAX_NEEDED_FROM > 1 && FROM_DIRECTION)
|
|
|| (TO_LOOP_MAX_NEEDED_FROM > 1 && !FROM_DIRECTION))
|
|
&& consume_incomplete && (data->__statep->__count & 7) != 0)
|
|
{
|
|
/* Yep, we have some bytes left over. Process them now.
|
|
But this must not happen while we are called from an
|
|
error handler. */
|
|
assert (outbufstart == NULL);
|
|
|
|
# if FROM_LOOP_MAX_NEEDED_FROM > 1
|
|
if (TO_LOOP_MAX_NEEDED_FROM == 1 || FROM_DIRECTION)
|
|
status = SINGLE(FROM_LOOP) (step, data, inptrp, inend, &outbuf,
|
|
outend, lirreversiblep
|
|
EXTRA_LOOP_ARGS);
|
|
# endif
|
|
# if !ONE_DIRECTION
|
|
# if FROM_LOOP_MAX_NEEDED_FROM > 1 && TO_LOOP_MAX_NEEDED_FROM > 1
|
|
else
|
|
# endif
|
|
# if TO_LOOP_MAX_NEEDED_FROM > 1
|
|
status = SINGLE(TO_LOOP) (step, data, inptrp, inend, &outbuf,
|
|
outend, lirreversiblep EXTRA_LOOP_ARGS);
|
|
# endif
|
|
# endif
|
|
|
|
if (__builtin_expect (status, __GCONV_OK) != __GCONV_OK)
|
|
return status;
|
|
}
|
|
#endif
|
|
|
|
while (1)
|
|
{
|
|
/* Remember the start value for this round. */
|
|
inptr = *inptrp;
|
|
/* The outbuf buffer is empty. */
|
|
outstart = outbuf;
|
|
#ifdef RESET_INPUT_BUFFER
|
|
/* Remember how many irreversible characters were skipped before
|
|
this round. */
|
|
size_t loop_irreversible
|
|
= lirreversible + (irreversible ? *irreversible : 0);
|
|
#endif
|
|
|
|
#ifdef SAVE_RESET_STATE
|
|
SAVE_RESET_STATE (1);
|
|
#endif
|
|
|
|
if (FROM_DIRECTION)
|
|
/* Run the conversion loop. */
|
|
status = FROM_LOOP (step, data, inptrp, inend, &outbuf, outend,
|
|
lirreversiblep EXTRA_LOOP_ARGS);
|
|
else
|
|
/* Run the conversion loop. */
|
|
status = TO_LOOP (step, data, inptrp, inend, &outbuf, outend,
|
|
lirreversiblep EXTRA_LOOP_ARGS);
|
|
|
|
/* If we were called as part of an error handling module we
|
|
don't do anything else here. */
|
|
if (__glibc_unlikely (outbufstart != NULL))
|
|
{
|
|
*outbufstart = outbuf;
|
|
return status;
|
|
}
|
|
|
|
/* We finished one use of the loops. */
|
|
++data->__invocation_counter;
|
|
|
|
/* If this is the last step leave the loop, there is nothing
|
|
we can do. */
|
|
if (__glibc_unlikely (data->__flags & __GCONV_IS_LAST))
|
|
{
|
|
/* Store information about how many bytes are available. */
|
|
data->__outbuf = outbuf;
|
|
|
|
/* Remember how many non-identical characters we
|
|
converted in an irreversible way. */
|
|
*irreversible += lirreversible;
|
|
|
|
break;
|
|
}
|
|
|
|
/* Write out all output which was produced. */
|
|
if (__glibc_likely (outbuf > outstart))
|
|
{
|
|
const unsigned char *outerr = data->__outbuf;
|
|
int result;
|
|
|
|
result = DL_CALL_FCT (fct, (next_step, next_data, &outerr,
|
|
outbuf, NULL, irreversible, 0,
|
|
consume_incomplete));
|
|
|
|
if (result != __GCONV_EMPTY_INPUT)
|
|
{
|
|
if (__glibc_unlikely (outerr != outbuf))
|
|
{
|
|
#ifdef RESET_INPUT_BUFFER
|
|
/* RESET_INPUT_BUFFER can only work when there were
|
|
no new irreversible characters skipped during
|
|
this round. */
|
|
if (loop_irreversible
|
|
== lirreversible + (irreversible ? *irreversible : 0))
|
|
{
|
|
RESET_INPUT_BUFFER;
|
|
goto done_reset;
|
|
}
|
|
#endif
|
|
/* We have a problem in one of the functions below.
|
|
Undo the conversion upto the error point. */
|
|
size_t nstatus __attribute__ ((unused));
|
|
|
|
/* Reload the pointers. */
|
|
*inptrp = inptr;
|
|
outbuf = outstart;
|
|
|
|
/* Restore the state. */
|
|
#ifdef SAVE_RESET_STATE
|
|
SAVE_RESET_STATE (0);
|
|
#endif
|
|
|
|
if (FROM_DIRECTION)
|
|
/* Run the conversion loop. */
|
|
nstatus = FROM_LOOP (step, data, inptrp, inend,
|
|
&outbuf, outerr,
|
|
lirreversiblep
|
|
EXTRA_LOOP_ARGS);
|
|
else
|
|
/* Run the conversion loop. */
|
|
nstatus = TO_LOOP (step, data, inptrp, inend,
|
|
&outbuf, outerr,
|
|
lirreversiblep
|
|
EXTRA_LOOP_ARGS);
|
|
|
|
/* We must run out of output buffer space in this
|
|
rerun. */
|
|
assert (outbuf == outerr);
|
|
assert (nstatus == __GCONV_FULL_OUTPUT);
|
|
|
|
/* If we haven't consumed a single byte decrement
|
|
the invocation counter. */
|
|
if (__glibc_unlikely (outbuf == outstart))
|
|
--data->__invocation_counter;
|
|
}
|
|
|
|
#ifdef RESET_INPUT_BUFFER
|
|
done_reset:
|
|
#endif
|
|
/* Change the status. */
|
|
status = result;
|
|
}
|
|
else
|
|
/* All the output is consumed, we can make another run
|
|
if everything was ok. */
|
|
if (status == __GCONV_FULL_OUTPUT)
|
|
{
|
|
status = __GCONV_OK;
|
|
outbuf = data->__outbuf;
|
|
}
|
|
}
|
|
|
|
if (status != __GCONV_OK)
|
|
break;
|
|
|
|
/* Reset the output buffer pointer for the next round. */
|
|
outbuf = data->__outbuf;
|
|
}
|
|
|
|
#ifdef END_LOOP
|
|
END_LOOP
|
|
#endif
|
|
|
|
/* If we are supposed to consume all character store now all of the
|
|
remaining characters in the `state' object. */
|
|
#if FROM_LOOP_MAX_NEEDED_FROM > 1 || TO_LOOP_MAX_NEEDED_FROM > 1
|
|
if (((FROM_LOOP_MAX_NEEDED_FROM > 1 && TO_LOOP_MAX_NEEDED_FROM > 1)
|
|
|| (FROM_LOOP_MAX_NEEDED_FROM > 1 && FROM_DIRECTION)
|
|
|| (TO_LOOP_MAX_NEEDED_FROM > 1 && !FROM_DIRECTION))
|
|
&& __builtin_expect (consume_incomplete, 0)
|
|
&& status == __GCONV_INCOMPLETE_INPUT)
|
|
{
|
|
# ifdef STORE_REST
|
|
mbstate_t *state = data->__statep;
|
|
|
|
STORE_REST
|
|
# else
|
|
/* Make sure the remaining bytes fit into the state objects
|
|
buffer. */
|
|
size_t cnt_after = inend - *inptrp;
|
|
assert (cnt_after <= sizeof (data->__statep->__value.__wchb));
|
|
|
|
size_t cnt;
|
|
for (cnt = 0; cnt < cnt_after; ++cnt)
|
|
data->__statep->__value.__wchb[cnt] = (*inptrp)[cnt];
|
|
*inptrp = inend;
|
|
data->__statep->__count &= ~7;
|
|
data->__statep->__count |= cnt;
|
|
# endif
|
|
}
|
|
#endif
|
|
#undef unaligned
|
|
#undef POSSIBLY_UNALIGNED
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
#undef DEFINE_INIT
|
|
#undef CHARSET_NAME
|
|
#undef DEFINE_FINI
|
|
#undef MIN_NEEDED_FROM
|
|
#undef MIN_NEEDED_TO
|
|
#undef MAX_NEEDED_FROM
|
|
#undef MAX_NEEDED_TO
|
|
#undef FROM_LOOP_MIN_NEEDED_FROM
|
|
#undef FROM_LOOP_MAX_NEEDED_FROM
|
|
#undef FROM_LOOP_MIN_NEEDED_TO
|
|
#undef FROM_LOOP_MAX_NEEDED_TO
|
|
#undef TO_LOOP_MIN_NEEDED_FROM
|
|
#undef TO_LOOP_MAX_NEEDED_FROM
|
|
#undef TO_LOOP_MIN_NEEDED_TO
|
|
#undef TO_LOOP_MAX_NEEDED_TO
|
|
#undef FROM_DIRECTION
|
|
#undef EMIT_SHIFT_TO_INIT
|
|
#undef FROM_LOOP
|
|
#undef TO_LOOP
|
|
#undef ONE_DIRECTION
|
|
#undef SAVE_RESET_STATE
|
|
#undef RESET_INPUT_BUFFER
|
|
#undef FUNCTION_NAME
|
|
#undef PREPARE_LOOP
|
|
#undef END_LOOP
|
|
#undef EXTRA_LOOP_ARGS
|
|
#undef STORE_REST
|
|
#undef FROM_ONEBYTE
|