glibc/sysdeps/generic/mul_n.c
Ulrich Drepper 01c901a56b update from main archive 961220
Sun Dec 22 00:01:27 1996  Ulrich Drepper  <drepper@cygnus.com>

	* inet/getnetgrent.c: Reformat copyright.

	* inet/getnetgrent_r.c (__internal_endnetgrent): Correct comment.
	(__internal_getnetgrent): Rename to __internal_getnetgrent_r as
	required in change nis/nss_compat/* at Thu Dec 19 14:24:50 1996.
	Reported by Thorsten Kukuk <kukuk@weber.uni-paderborn.de>.

	* nss/nss_files/files-netgrp.c: Fix typo.
	* login/utmp_db.c: Comment out unused variables.
	* misc/tst-dirname.c: Provide prototype for main (for now).
	* new-malloc/mcheck-init.c: Include <mcheck.h>.
	* new-malloc/obstack.c: Provide real prototypes.

	* resolv/base64.c (b64_ntop): Use size_t as type of `i', not int.
	(b64_pton): Likewise for `tarindex'.
	* resolv/nsap_addr.c (inet_nsap_addr): Add cast to prevent warning.

	* stdio-common/Makefile: Add CFLAGS-vfprintf.c to prevent warning.
	* stdio-common/printf-parse.h: Remove definition of MIN and MAX.
	* stdio-common/printf-prs.c: Include <sys/param.h> to get MIN and MAX.
	* stdio-common/vfprintf.c: Likewise.
	* stdlib/gmp-impl.h: Only define MIN and MAX if not already done.
	* stdlib/tst-strtol.c: Don't use -2147483648 as unsigned long value.

	* sysdeps/generic/Makefile ($(subdir)=string): Define
	CFLAGS-wordcopy.c to prevent warning.
	* sysdeps/generic/mul_n.c (mpn_mul_n): Don't define as inline.
	* sysdeps/generic/wordcopy.c: De-ANSI-declfy.
	* sysdeps/i386/Makefile ($(subdir)=elf): Define CFLAGS-rtld.c
	to prevent warning.
	* sysdeps/i386/dl-machine.h: Correct copyright.
	* sysdeps/unix/closedir.c: Likewise.
	* sysdeps/unix/dirstream.h: Likewise.
	* sysdeps/unix/opendir.c: Likewise.
	* time/tzset.c: Add prototype for __tzset_internal.

	* sysdeps/gnu/utmpbits.h (enum utlogin): Comment out since the
	way it is supposed to work is not yet known.
	(struct utmp): Remove ut_login and ut_syslen field for now.

Sat Dec 21 16:23:54 1996  Ulrich Drepper  <drepper@cygnus.com>

	* time/strftime.c: Fix another bug in handling flags made it
	impossible to use the `-', `_', or `0' flag.
1996-12-22 00:32:43 +00:00

402 lines
11 KiB
C

/* mpn_mul_n -- Multiply two natural numbers of length n.
Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
License for more details.
You should have received a copy of the GNU Library General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
always stored. Return the most significant limb.
Argument constraints:
1. PRODP != UP and PRODP != VP, i.e. the destination
must be distinct from the multiplier and the multiplicand. */
/* If KARATSUBA_THRESHOLD is not already defined, define it to a
value which is good on most machines. */
#ifndef KARATSUBA_THRESHOLD
#define KARATSUBA_THRESHOLD 32
#endif
/* The code can't handle KARATSUBA_THRESHOLD smaller than 2. */
#if KARATSUBA_THRESHOLD < 2
#undef KARATSUBA_THRESHOLD
#define KARATSUBA_THRESHOLD 2
#endif
/* Handle simple cases with traditional multiplication.
This is the most critical code of multiplication. All multiplies rely
on this, both small and huge. Small ones arrive here immediately. Huge
ones arrive here as this is the base case for Karatsuba's recursive
algorithm below. */
void
#if __STDC__
impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
#else
impn_mul_n_basecase (prodp, up, vp, size)
mp_ptr prodp;
mp_srcptr up;
mp_srcptr vp;
mp_size_t size;
#endif
{
mp_size_t i;
mp_limb_t cy_limb;
mp_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
if (v_limb <= 1)
{
if (v_limb == 1)
MPN_COPY (prodp, up, size);
else
MPN_ZERO (prodp, size);
cy_limb = 0;
}
else
cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
U with one limb from V, and add it to PROD. */
for (i = 1; i < size; i++)
{
v_limb = vp[i];
if (v_limb <= 1)
{
cy_limb = 0;
if (v_limb == 1)
cy_limb = mpn_add_n (prodp, prodp, up, size);
}
else
cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
}
}
void
#if __STDC__
impn_mul_n (mp_ptr prodp,
mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
#else
impn_mul_n (prodp, up, vp, size, tspace)
mp_ptr prodp;
mp_srcptr up;
mp_srcptr vp;
mp_size_t size;
mp_ptr tspace;
#endif
{
if ((size & 1) != 0)
{
/* The size is odd, the code code below doesn't handle that.
Multiply the least significant (size - 1) limbs with a recursive
call, and handle the most significant limb of S1 and S2
separately. */
/* A slightly faster way to do this would be to make the Karatsuba
code below behave as if the size were even, and let it check for
odd size in the end. I.e., in essence move this code to the end.
Doing so would save us a recursive call, and potentially make the
stack grow a lot less. */
mp_size_t esize = size - 1; /* even size */
mp_limb_t cy_limb;
MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
prodp[esize + esize] = cy_limb;
cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
prodp[esize + size] = cy_limb;
}
else
{
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
Split U in two pieces, U1 and U0, such that
U = U0 + U1*(B**n),
and V in V1 and V0, such that
V = V0 + V1*(B**n).
UV is then computed recursively using the identity
2n n n n
UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
1 1 1 0 0 1 0 0
Where B = 2**BITS_PER_MP_LIMB. */
mp_size_t hsize = size >> 1;
mp_limb_t cy;
int negflg;
/*** Product H. ________________ ________________
|_____U1 x V1____||____U0 x V0_____| */
/* Put result in upper part of PROD and pass low part of TSPACE
as new TSPACE. */
MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
/*** Product M. ________________
|_(U1-U0)(V0-V1)_| */
if (mpn_cmp (up + hsize, up, hsize) >= 0)
{
mpn_sub_n (prodp, up + hsize, up, hsize);
negflg = 0;
}
else
{
mpn_sub_n (prodp, up, up + hsize, hsize);
negflg = 1;
}
if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
{
mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
negflg ^= 1;
}
else
{
mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
/* No change of NEGFLG. */
}
/* Read temporary operands from low part of PROD.
Put result in low part of TSPACE using upper part of TSPACE
as new TSPACE. */
MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
/*** Add/copy product H. */
MPN_COPY (prodp + hsize, prodp + size, hsize);
cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
/*** Add product M (if NEGFLG M is a negative number). */
if (negflg)
cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
else
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
/*** Product L. ________________ ________________
|________________||____U0 x V0_____| */
/* Read temporary operands from low part of PROD.
Put result in low part of TSPACE using upper part of TSPACE
as new TSPACE. */
MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
/*** Add/copy Product L (twice). */
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
if (cy)
mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
MPN_COPY (prodp, tspace, hsize);
cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
if (cy)
mpn_add_1 (prodp + size, prodp + size, size, 1);
}
}
void
#if __STDC__
impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
#else
impn_sqr_n_basecase (prodp, up, size)
mp_ptr prodp;
mp_srcptr up;
mp_size_t size;
#endif
{
mp_size_t i;
mp_limb_t cy_limb;
mp_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = up[0];
if (v_limb <= 1)
{
if (v_limb == 1)
MPN_COPY (prodp, up, size);
else
MPN_ZERO (prodp, size);
cy_limb = 0;
}
else
cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
U with one limb from V, and add it to PROD. */
for (i = 1; i < size; i++)
{
v_limb = up[i];
if (v_limb <= 1)
{
cy_limb = 0;
if (v_limb == 1)
cy_limb = mpn_add_n (prodp, prodp, up, size);
}
else
cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
}
}
void
#if __STDC__
impn_sqr_n (mp_ptr prodp,
mp_srcptr up, mp_size_t size, mp_ptr tspace)
#else
impn_sqr_n (prodp, up, size, tspace)
mp_ptr prodp;
mp_srcptr up;
mp_size_t size;
mp_ptr tspace;
#endif
{
if ((size & 1) != 0)
{
/* The size is odd, the code code below doesn't handle that.
Multiply the least significant (size - 1) limbs with a recursive
call, and handle the most significant limb of S1 and S2
separately. */
/* A slightly faster way to do this would be to make the Karatsuba
code below behave as if the size were even, and let it check for
odd size in the end. I.e., in essence move this code to the end.
Doing so would save us a recursive call, and potentially make the
stack grow a lot less. */
mp_size_t esize = size - 1; /* even size */
mp_limb_t cy_limb;
MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
prodp[esize + esize] = cy_limb;
cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
prodp[esize + size] = cy_limb;
}
else
{
mp_size_t hsize = size >> 1;
mp_limb_t cy;
/*** Product H. ________________ ________________
|_____U1 x U1____||____U0 x U0_____| */
/* Put result in upper part of PROD and pass low part of TSPACE
as new TSPACE. */
MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
/*** Product M. ________________
|_(U1-U0)(U0-U1)_| */
if (mpn_cmp (up + hsize, up, hsize) >= 0)
{
mpn_sub_n (prodp, up + hsize, up, hsize);
}
else
{
mpn_sub_n (prodp, up, up + hsize, hsize);
}
/* Read temporary operands from low part of PROD.
Put result in low part of TSPACE using upper part of TSPACE
as new TSPACE. */
MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
/*** Add/copy product H. */
MPN_COPY (prodp + hsize, prodp + size, hsize);
cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
/*** Add product M (if NEGFLG M is a negative number). */
cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
/*** Product L. ________________ ________________
|________________||____U0 x U0_____| */
/* Read temporary operands from low part of PROD.
Put result in low part of TSPACE using upper part of TSPACE
as new TSPACE. */
MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
/*** Add/copy Product L (twice). */
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
if (cy)
mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
MPN_COPY (prodp, tspace, hsize);
cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
if (cy)
mpn_add_1 (prodp + size, prodp + size, size, 1);
}
}
/* This should be made into an inline function in gmp.h. */
void
#if __STDC__
mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
#else
mpn_mul_n (prodp, up, vp, size)
mp_ptr prodp;
mp_srcptr up;
mp_srcptr vp;
mp_size_t size;
#endif
{
TMP_DECL (marker);
TMP_MARK (marker);
if (up == vp)
{
if (size < KARATSUBA_THRESHOLD)
{
impn_sqr_n_basecase (prodp, up, size);
}
else
{
mp_ptr tspace;
tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
impn_sqr_n (prodp, up, size, tspace);
}
}
else
{
if (size < KARATSUBA_THRESHOLD)
{
impn_mul_n_basecase (prodp, up, vp, size);
}
else
{
mp_ptr tspace;
tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
impn_mul_n (prodp, up, vp, size, tspace);
}
}
TMP_FREE (marker);
}