mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-15 09:30:06 +00:00
02bbfb414f
This runs the attached sed script against these files using a regex which aggressively matches long double literals when not obviously part of a comment. Likewise, 5 digit or less integral constants are replaced with integer constants, excepting the two cases of 0 used in large tables, which are also the only integral values of the form x.0*E0L encountered within these converted files. Likewise, -L(x) is transformed into L(-x). Naturally, the script has a few minor hiccups which are more clearly remedied via the attached fixup patch. Such hiccups include, context-sensitive promotion to a real type, and munging constants inside harder to detect comment blocks.
136 lines
3.3 KiB
C
136 lines
3.3 KiB
C
/* cbrtl.c
|
|
*
|
|
* Cube root, long double precision
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, cbrtl();
|
|
*
|
|
* y = cbrtl( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the cube root of the argument, which may be negative.
|
|
*
|
|
* Range reduction involves determining the power of 2 of
|
|
* the argument. A polynomial of degree 2 applied to the
|
|
* mantissa, and multiplication by the cube root of 1, 2, or 4
|
|
* approximates the root to within about 0.1%. Then Newton's
|
|
* iteration is used three times to converge to an accurate
|
|
* result.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -8,8 100000 1.3e-34 3.9e-35
|
|
* IEEE exp(+-707) 100000 1.3e-34 4.3e-35
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Cephes Math Library Release 2.2: January, 1991
|
|
Copyright 1984, 1991 by Stephen L. Moshier
|
|
Adapted for glibc October, 2001.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251);
|
|
static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493);
|
|
static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467);
|
|
static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257);
|
|
|
|
|
|
_Float128
|
|
__cbrtl (_Float128 x)
|
|
{
|
|
int e, rem, sign;
|
|
_Float128 z;
|
|
|
|
if (!isfinite (x))
|
|
return x + x;
|
|
|
|
if (x == 0)
|
|
return (x);
|
|
|
|
if (x > 0)
|
|
sign = 1;
|
|
else
|
|
{
|
|
sign = -1;
|
|
x = -x;
|
|
}
|
|
|
|
z = x;
|
|
/* extract power of 2, leaving mantissa between 0.5 and 1 */
|
|
x = __frexpl (x, &e);
|
|
|
|
/* Approximate cube root of number between .5 and 1,
|
|
peak relative error = 1.2e-6 */
|
|
x = ((((L(1.3584464340920900529734e-1) * x
|
|
- L(6.3986917220457538402318e-1)) * x
|
|
+ L(1.2875551670318751538055e0)) * x
|
|
- L(1.4897083391357284957891e0)) * x
|
|
+ L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1);
|
|
|
|
/* exponent divided by 3 */
|
|
if (e >= 0)
|
|
{
|
|
rem = e;
|
|
e /= 3;
|
|
rem -= 3 * e;
|
|
if (rem == 1)
|
|
x *= CBRT2;
|
|
else if (rem == 2)
|
|
x *= CBRT4;
|
|
}
|
|
else
|
|
{ /* argument less than 1 */
|
|
e = -e;
|
|
rem = e;
|
|
e /= 3;
|
|
rem -= 3 * e;
|
|
if (rem == 1)
|
|
x *= CBRT2I;
|
|
else if (rem == 2)
|
|
x *= CBRT4I;
|
|
e = -e;
|
|
}
|
|
|
|
/* multiply by power of 2 */
|
|
x = __ldexpl (x, e);
|
|
|
|
/* Newton iteration */
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
|
|
if (sign < 0)
|
|
x = -x;
|
|
return (x);
|
|
}
|
|
|
|
weak_alias (__cbrtl, cbrtl)
|