mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
0fed0b250f
Plus a small amount of moving includes around in order to be able to remove duplicate definition of asuint64. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
123 lines
4.4 KiB
C
123 lines
4.4 KiB
C
/* Double-precision AdvSIMD atan2
|
|
|
|
Copyright (C) 2023-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "math_config.h"
|
|
#include "v_math.h"
|
|
#include "poly_advsimd_f64.h"
|
|
|
|
static const struct data
|
|
{
|
|
float64x2_t pi_over_2;
|
|
float64x2_t poly[20];
|
|
} data = {
|
|
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
|
the interval [2**-1022, 1.0]. */
|
|
.poly = { V2 (-0x1.5555555555555p-2), V2 (0x1.99999999996c1p-3),
|
|
V2 (-0x1.2492492478f88p-3), V2 (0x1.c71c71bc3951cp-4),
|
|
V2 (-0x1.745d160a7e368p-4), V2 (0x1.3b139b6a88ba1p-4),
|
|
V2 (-0x1.11100ee084227p-4), V2 (0x1.e1d0f9696f63bp-5),
|
|
V2 (-0x1.aebfe7b418581p-5), V2 (0x1.842dbe9b0d916p-5),
|
|
V2 (-0x1.5d30140ae5e99p-5), V2 (0x1.338e31eb2fbbcp-5),
|
|
V2 (-0x1.00e6eece7de8p-5), V2 (0x1.860897b29e5efp-6),
|
|
V2 (-0x1.0051381722a59p-6), V2 (0x1.14e9dc19a4a4ep-7),
|
|
V2 (-0x1.d0062b42fe3bfp-9), V2 (0x1.17739e210171ap-10),
|
|
V2 (-0x1.ab24da7be7402p-13), V2 (0x1.358851160a528p-16), },
|
|
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
|
|
};
|
|
|
|
#define SignMask v_u64 (0x8000000000000000)
|
|
|
|
/* Special cases i.e. 0, infinity, NaN (fall back to scalar calls). */
|
|
static float64x2_t VPCS_ATTR NOINLINE
|
|
special_case (float64x2_t y, float64x2_t x, float64x2_t ret, uint64x2_t cmp)
|
|
{
|
|
return v_call2_f64 (atan2, y, x, ret, cmp);
|
|
}
|
|
|
|
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
|
|
static inline uint64x2_t
|
|
zeroinfnan (uint64x2_t i)
|
|
{
|
|
/* (2 * i - 1) >= (2 * asuint64 (INFINITY) - 1). */
|
|
return vcgeq_u64 (vsubq_u64 (vaddq_u64 (i, i), v_u64 (1)),
|
|
v_u64 (2 * asuint64 (INFINITY) - 1));
|
|
}
|
|
|
|
/* Fast implementation of vector atan2.
|
|
Maximum observed error is 2.8 ulps:
|
|
_ZGVnN2vv_atan2 (0x1.9651a429a859ap+5, 0x1.953075f4ee26p+5)
|
|
got 0x1.92d628ab678ccp-1
|
|
want 0x1.92d628ab678cfp-1. */
|
|
float64x2_t VPCS_ATTR V_NAME_D2 (atan2) (float64x2_t y, float64x2_t x)
|
|
{
|
|
const struct data *data_ptr = ptr_barrier (&data);
|
|
|
|
uint64x2_t ix = vreinterpretq_u64_f64 (x);
|
|
uint64x2_t iy = vreinterpretq_u64_f64 (y);
|
|
|
|
uint64x2_t special_cases = vorrq_u64 (zeroinfnan (ix), zeroinfnan (iy));
|
|
|
|
uint64x2_t sign_x = vandq_u64 (ix, SignMask);
|
|
uint64x2_t sign_y = vandq_u64 (iy, SignMask);
|
|
uint64x2_t sign_xy = veorq_u64 (sign_x, sign_y);
|
|
|
|
float64x2_t ax = vabsq_f64 (x);
|
|
float64x2_t ay = vabsq_f64 (y);
|
|
|
|
uint64x2_t pred_xlt0 = vcltzq_f64 (x);
|
|
uint64x2_t pred_aygtax = vcgtq_f64 (ay, ax);
|
|
|
|
/* Set up z for call to atan. */
|
|
float64x2_t n = vbslq_f64 (pred_aygtax, vnegq_f64 (ax), ay);
|
|
float64x2_t d = vbslq_f64 (pred_aygtax, ay, ax);
|
|
float64x2_t z = vdivq_f64 (n, d);
|
|
|
|
/* Work out the correct shift. */
|
|
float64x2_t shift = vreinterpretq_f64_u64 (
|
|
vandq_u64 (pred_xlt0, vreinterpretq_u64_f64 (v_f64 (-2.0))));
|
|
shift = vbslq_f64 (pred_aygtax, vaddq_f64 (shift, v_f64 (1.0)), shift);
|
|
shift = vmulq_f64 (shift, data_ptr->pi_over_2);
|
|
|
|
/* Calculate the polynomial approximation.
|
|
Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
|
|
full scheme to avoid underflow in x^16.
|
|
The order 19 polynomial P approximates
|
|
(atan(sqrt(x))-sqrt(x))/x^(3/2). */
|
|
float64x2_t z2 = vmulq_f64 (z, z);
|
|
float64x2_t x2 = vmulq_f64 (z2, z2);
|
|
float64x2_t x4 = vmulq_f64 (x2, x2);
|
|
float64x2_t x8 = vmulq_f64 (x4, x4);
|
|
float64x2_t ret
|
|
= vfmaq_f64 (v_estrin_7_f64 (z2, x2, x4, data_ptr->poly),
|
|
v_estrin_11_f64 (z2, x2, x4, x8, data_ptr->poly + 8), x8);
|
|
|
|
/* Finalize. y = shift + z + z^3 * P(z^2). */
|
|
ret = vfmaq_f64 (z, ret, vmulq_f64 (z2, z));
|
|
ret = vaddq_f64 (ret, shift);
|
|
|
|
/* Account for the sign of x and y. */
|
|
ret = vreinterpretq_f64_u64 (
|
|
veorq_u64 (vreinterpretq_u64_f64 (ret), sign_xy));
|
|
|
|
if (__glibc_unlikely (v_any_u64 (special_cases)))
|
|
return special_case (y, x, ret, special_cases);
|
|
|
|
return ret;
|
|
}
|