mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-25 14:30:06 +00:00
b09fee1d21
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
104 lines
4.5 KiB
C
104 lines
4.5 KiB
C
/* Helper for double-precision Advanced SIMD routines which depend on log1p
|
|
|
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef AARCH64_FPU_V_LOG1P_INLINE_H
|
|
#define AARCH64_FPU_V_LOG1P_INLINE_H
|
|
|
|
#include "v_math.h"
|
|
#include "poly_advsimd_f64.h"
|
|
|
|
struct v_log1p_data
|
|
{
|
|
float64x2_t poly[19], ln2[2];
|
|
uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask;
|
|
int64x2_t one_top;
|
|
};
|
|
|
|
/* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */
|
|
#define V_LOG1P_CONSTANTS_TABLE \
|
|
{ \
|
|
.poly = { V2 (-0x1.ffffffffffffbp-2), V2 (0x1.55555555551a9p-2), \
|
|
V2 (-0x1.00000000008e3p-2), V2 (0x1.9999999a32797p-3), \
|
|
V2 (-0x1.555555552fecfp-3), V2 (0x1.249248e071e5ap-3), \
|
|
V2 (-0x1.ffffff8bf8482p-4), V2 (0x1.c71c8f07da57ap-4), \
|
|
V2 (-0x1.9999ca4ccb617p-4), V2 (0x1.7459ad2e1dfa3p-4), \
|
|
V2 (-0x1.554d2680a3ff2p-4), V2 (0x1.3b4c54d487455p-4), \
|
|
V2 (-0x1.2548a9ffe80e6p-4), V2 (0x1.0f389a24b2e07p-4), \
|
|
V2 (-0x1.eee4db15db335p-5), V2 (0x1.e95b494d4a5ddp-5), \
|
|
V2 (-0x1.15fdf07cb7c73p-4), V2 (0x1.0310b70800fcfp-4), \
|
|
V2 (-0x1.cfa7385bdb37ep-6) }, \
|
|
.ln2 = { V2 (0x1.62e42fefa3800p-1), V2 (0x1.ef35793c76730p-45) }, \
|
|
.hf_rt2_top = V2 (0x3fe6a09e00000000), \
|
|
.one_m_hf_rt2_top = V2 (0x00095f6200000000), \
|
|
.umask = V2 (0x000fffff00000000), .one_top = V2 (0x3ff) \
|
|
}
|
|
|
|
#define BottomMask v_u64 (0xffffffff)
|
|
|
|
static inline float64x2_t
|
|
log1p_inline (float64x2_t x, const struct v_log1p_data *d)
|
|
{
|
|
/* Helper for calculating log(x + 1). Copied from v_log1p_2u5.c, with several
|
|
modifications:
|
|
- No special-case handling - this should be dealt with by the caller.
|
|
- Pairwise Horner polynomial evaluation for improved accuracy.
|
|
- Optionally simulate the shortcut for k=0, used in the scalar routine,
|
|
using v_sel, for improved accuracy when the argument to log1p is close to
|
|
0. This feature is enabled by defining WANT_V_LOG1P_K0_SHORTCUT as 1 in
|
|
the source of the caller before including this file.
|
|
See v_log1pf_2u1.c for details of the algorithm. */
|
|
float64x2_t m = vaddq_f64 (x, v_f64 (1));
|
|
uint64x2_t mi = vreinterpretq_u64_f64 (m);
|
|
uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top);
|
|
|
|
int64x2_t ki
|
|
= vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top);
|
|
float64x2_t k = vcvtq_f64_s64 (ki);
|
|
|
|
/* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
|
|
uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top);
|
|
uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask));
|
|
float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1));
|
|
|
|
/* Correction term c/m. */
|
|
float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1))), m);
|
|
|
|
#ifndef WANT_V_LOG1P_K0_SHORTCUT
|
|
#error \
|
|
"Cannot use v_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0"
|
|
#elif WANT_V_LOG1P_K0_SHORTCUT
|
|
/* Shortcut if k is 0 - set correction term to 0 and f to x. The result is
|
|
that the approximation is solely the polynomial. */
|
|
uint64x2_t k0 = vceqzq_f64 (k);
|
|
cm = v_zerofy_f64 (cm, k0);
|
|
f = vbslq_f64 (k0, x, f);
|
|
#endif
|
|
|
|
/* Approximate log1p(f) on the reduced input using a polynomial. */
|
|
float64x2_t f2 = vmulq_f64 (f, f);
|
|
float64x2_t p = v_pw_horner_18_f64 (f, f2, d->poly);
|
|
|
|
/* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */
|
|
float64x2_t ylo = vfmaq_f64 (cm, k, d->ln2[1]);
|
|
float64x2_t yhi = vfmaq_f64 (f, k, d->ln2[0]);
|
|
return vfmaq_f64 (vaddq_f64 (ylo, yhi), f2, p);
|
|
}
|
|
|
|
#endif
|