glibc/sysdeps/ieee754/ldbl-128ibm/e_powl.c
Joseph Myers e44acb2063 Use floor functions not __floor functions in glibc libm.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).

The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).

The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.

Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example.  I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally.  (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)

Tested for x86_64, and with build-many-glibcs.py.

	* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
	__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
	New macro.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (floor): Likewise.
	* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
	header inclusion.
	* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
	* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
	* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
	* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
	* sysdeps/riscv/rvf/s_floorf.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
	Remove macro.
	[_ARCH_PWR5X] (__floorf): Likewise.
	* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
	inline function.
	[__SSE4_1__] (__floorf): Likewise.
	* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
	instead of __floor variants.
	* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
	* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
	* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
	* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
	* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
	* math/w_tgamma_compat.c (__tgamma): Likewise.
	* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
	* math/w_tgammaf_compat.c (__tgammaf): Likewise.
	* math/w_tgammal_compat.c (__tgammal): Likewise.
	* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
	Likewise.
	* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
	* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
	* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
2018-09-14 13:09:01 +00:00

417 lines
11 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Expansions and modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_powl(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
static const long double bp[] = {
1.0L,
1.5L,
};
/* log_2(1.5) */
static const long double dp_h[] = {
0.0,
5.8496250072115607565592654282227158546448E-1L
};
/* Low part of log_2(1.5) */
static const long double dp_l[] = {
0.0,
1.0579781240112554492329533686862998106046E-16L
};
static const long double zero = 0.0L,
one = 1.0L,
two = 2.0L,
two113 = 1.0384593717069655257060992658440192E34L,
huge = 1.0e300L,
tiny = 1.0e-300L;
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
z = (x-1)/(x+1)
1 <= x <= 1.25
Peak relative error 2.3e-37 */
static const long double LN[] =
{
-3.0779177200290054398792536829702930623200E1L,
6.5135778082209159921251824580292116201640E1L,
-4.6312921812152436921591152809994014413540E1L,
1.2510208195629420304615674658258363295208E1L,
-9.9266909031921425609179910128531667336670E-1L
};
static const long double LD[] =
{
-5.129862866715009066465422805058933131960E1L,
1.452015077564081884387441590064272782044E2L,
-1.524043275549860505277434040464085593165E2L,
7.236063513651544224319663428634139768808E1L,
-1.494198912340228235853027849917095580053E1L
/* 1.0E0 */
};
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
0 <= x <= 0.5
Peak relative error 5.7e-38 */
static const long double PN[] =
{
5.081801691915377692446852383385968225675E8L,
9.360895299872484512023336636427675327355E6L,
4.213701282274196030811629773097579432957E4L,
5.201006511142748908655720086041570288182E1L,
9.088368420359444263703202925095675982530E-3L,
};
static const long double PD[] =
{
3.049081015149226615468111430031590411682E9L,
1.069833887183886839966085436512368982758E8L,
8.259257717868875207333991924545445705394E5L,
1.872583833284143212651746812884298360922E3L,
/* 1.0E0 */
};
static const long double
/* ln 2 */
lg2 = 6.9314718055994530941723212145817656807550E-1L,
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
ovt = 8.0085662595372944372e-0017L,
/* 2/(3*log(2)) */
cp = 9.6179669392597560490661645400126142495110E-1L,
cp_h = 9.6179669392597555432899980587535537779331E-1L,
cp_l = 5.0577616648125906047157785230014751039424E-17L;
long double
__ieee754_powl (long double x, long double y)
{
long double z, ax, z_h, z_l, p_h, p_l;
long double y1, t1, t2, r, s, sgn, t, u, v, w;
long double s2, s_h, s_l, t_h, t_l, ay;
int32_t i, j, k, yisint, n;
uint32_t ix, iy;
int32_t hx, hy, hax;
double ohi, xhi, xlo, yhi, ylo;
uint32_t lx, ly, lj;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS (hx, lx, xhi);
ix = hx & 0x7fffffff;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS (hy, ly, yhi);
iy = hy & 0x7fffffff;
/* y==zero: x**0 = 1 */
if ((iy | ly) == 0 && !issignaling (x))
return one;
/* 1.0**y = 1; -1.0**+-Inf = 1 */
if (x == one && !issignaling (y))
return one;
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
return one;
/* +-NaN return x+y */
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
return x + y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
uint32_t low_ye;
GET_HIGH_WORD (low_ye, ylo);
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
yisint = 2; /* even integer y */
else if (iy >= 0x3ff00000) /* 1.0 */
{
if (floorl (y) == y)
{
z = 0.5 * y;
if (floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
ax = fabsl (x);
/* special value of y */
if (ly == 0)
{
if (iy == 0x7ff00000) /* y is +-inf */
{
if (ax > one)
/* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else
/* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (ylo == 0.0)
{
if (iy == 0x3ff00000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
if (hy == 0x3fe00000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return sqrtl (x);
}
}
}
/* special value of x */
if (lx == 0)
{
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3ff00000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* sgn (sign of result -ve**odd) = -1 else = 1 */
sgn = one;
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
sgn = -one; /* (-ve)**(odd int) */
/* |y| is huge.
2^-16495 = 1/2 of smallest representable value.
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
if (iy > 0x41d654b0)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x47d654b0)
{
if (ix <= 0x3fefffff)
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
if (ix >= 0x3ff00000)
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3fefffff)
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
if (ix > 0x3ff00000)
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
}
ay = y > 0 ? y : -y;
if (ay < 0x1p-117)
y = y < 0 ? -0x1p-117 : 0x1p-117;
n = 0;
/* take care subnormal number */
if (ix < 0x00100000)
{
ax *= two113;
n -= 113;
ohi = ldbl_high (ax);
GET_HIGH_WORD (ix, ohi);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
ix = j | 0x3ff00000; /* normalize ix */
if (j <= 0x39880)
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb670)
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= 0x00100000;
}
ohi = ldbl_high (ax);
GET_HIGH_WORD (hax, ohi);
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = ldbl_high (s);
/* t_h=ax+bp[k] High */
t_h = ax + bp[k];
t_h = ldbl_high (t_h);
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
r = s2 * s2 * u / v;
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = ldbl_high (t_h);
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
p_h = ldbl_high (p_h);
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
t1 = ldbl_high (t1);
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = ldbl_high (y);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
ohi = ldbl_high (z);
EXTRACT_WORDS (j, lj, ohi);
if (j >= 0x40d00000) /* z >= 16384 */
{
/* if z > 16384 */
if (((j - 0x40d00000) | lj) != 0)
return sgn * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return sgn * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc0d01bc0) | lj) != 0)
return sgn * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return sgn * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000)
{ /* if |z| > 0.5, set n = [z+0.5] */
n = floorl (z + 0.5L);
t = n;
p_h -= t;
}
t = p_l + p_h;
t = ldbl_high (t);
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
/* exp(z) */
t = z * z;
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
t1 = z - t * u / v;
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
z = __scalbnl (sgn * z, n);
math_check_force_underflow (z);
return z;
}
strong_alias (__ieee754_powl, __powl_finite)