glibc/sysdeps/aarch64/multiarch/memset_a64fx.S
Naohiro Tamura 4f26956d5b aarch64: Added optimized memset for A64FX
This patch optimizes the performance of memset for A64FX [1] which
implements ARMv8-A SVE and has L1 64KB cache per core and L2 8MB cache
per NUMA node.

The performance optimization makes use of Scalable Vector Register
with several techniques such as loop unrolling, memory access
alignment, cache zero fill and prefetch.

SVE assembler code for memset is implemented as Vector Length Agnostic
code so theoretically it can be run on any SOC which supports ARMv8-A
SVE standard.

We confirmed that all testcases have been passed by running 'make
check' and 'make xcheck' not only on A64FX but also on ThunderX2.

And also we confirmed that the SVE 512 bit vector register performance
is roughly 4 times better than Advanced SIMD 128 bit register and 8
times better than scalar 64 bit register by running 'make bench'.

[1] https://github.com/fujitsu/A64FX

Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Reviewed-by: Szabolcs Nagy <Szabolcs.Nagy@arm.com>
2021-05-27 09:47:53 +01:00

269 lines
6.7 KiB
ArmAsm

/* Optimized memset for Fujitsu A64FX processor.
Copyright (C) 2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<https://www.gnu.org/licenses/>. */
#include <sysdep.h>
#include <sysdeps/aarch64/memset-reg.h>
/* Assumptions:
*
* ARMv8.2-a, AArch64, unaligned accesses, sve
*
*/
#define L1_SIZE (64*1024) // L1 64KB
#define L2_SIZE (8*1024*1024) // L2 8MB - 1MB
#define CACHE_LINE_SIZE 256
#define PF_DIST_L1 (CACHE_LINE_SIZE * 16) // Prefetch distance L1
#define ZF_DIST (CACHE_LINE_SIZE * 21) // Zerofill distance
#define rest x8
#define vector_length x9
#define vl_remainder x10 // vector_length remainder
#define cl_remainder x11 // CACHE_LINE_SIZE remainder
#if HAVE_AARCH64_SVE_ASM
# if IS_IN (libc)
# define MEMSET __memset_a64fx
.arch armv8.2-a+sve
.macro dc_zva times
dc zva, tmp1
add tmp1, tmp1, CACHE_LINE_SIZE
.if \times-1
dc_zva "(\times-1)"
.endif
.endm
.macro st1b_unroll first=0, last=7
st1b z0.b, p0, [dst, #\first, mul vl]
.if \last-\first
st1b_unroll "(\first+1)", \last
.endif
.endm
.macro shortcut_for_small_size exit
// if rest <= vector_length * 2
whilelo p0.b, xzr, count
whilelo p1.b, vector_length, count
b.last 1f
st1b z0.b, p0, [dstin, #0, mul vl]
st1b z0.b, p1, [dstin, #1, mul vl]
ret
1: // if rest > vector_length * 8
cmp count, vector_length, lsl 3 // vector_length * 8
b.hi \exit
// if rest <= vector_length * 4
lsl tmp1, vector_length, 1 // vector_length * 2
whilelo p2.b, tmp1, count
incb tmp1
whilelo p3.b, tmp1, count
b.last 1f
st1b z0.b, p0, [dstin, #0, mul vl]
st1b z0.b, p1, [dstin, #1, mul vl]
st1b z0.b, p2, [dstin, #2, mul vl]
st1b z0.b, p3, [dstin, #3, mul vl]
ret
1: // if rest <= vector_length * 8
lsl tmp1, vector_length, 2 // vector_length * 4
whilelo p4.b, tmp1, count
incb tmp1
whilelo p5.b, tmp1, count
b.last 1f
st1b z0.b, p0, [dstin, #0, mul vl]
st1b z0.b, p1, [dstin, #1, mul vl]
st1b z0.b, p2, [dstin, #2, mul vl]
st1b z0.b, p3, [dstin, #3, mul vl]
st1b z0.b, p4, [dstin, #4, mul vl]
st1b z0.b, p5, [dstin, #5, mul vl]
ret
1: lsl tmp1, vector_length, 2 // vector_length * 4
incb tmp1 // vector_length * 5
incb tmp1 // vector_length * 6
whilelo p6.b, tmp1, count
incb tmp1
whilelo p7.b, tmp1, count
st1b z0.b, p0, [dstin, #0, mul vl]
st1b z0.b, p1, [dstin, #1, mul vl]
st1b z0.b, p2, [dstin, #2, mul vl]
st1b z0.b, p3, [dstin, #3, mul vl]
st1b z0.b, p4, [dstin, #4, mul vl]
st1b z0.b, p5, [dstin, #5, mul vl]
st1b z0.b, p6, [dstin, #6, mul vl]
st1b z0.b, p7, [dstin, #7, mul vl]
ret
.endm
ENTRY (MEMSET)
PTR_ARG (0)
SIZE_ARG (2)
cbnz count, 1f
ret
1: dup z0.b, valw
cntb vector_length
// shortcut for less than vector_length * 8
// gives a free ptrue to p0.b for n >= vector_length
shortcut_for_small_size L(vl_agnostic)
// end of shortcut
L(vl_agnostic): // VL Agnostic
mov rest, count
mov dst, dstin
add dstend, dstin, count
// if rest >= L2_SIZE && vector_length == 64 then L(L2)
mov tmp1, 64
cmp rest, L2_SIZE
ccmp vector_length, tmp1, 0, cs
b.eq L(L2)
// if rest >= L1_SIZE && vector_length == 64 then L(L1_prefetch)
cmp rest, L1_SIZE
ccmp vector_length, tmp1, 0, cs
b.eq L(L1_prefetch)
L(unroll32):
lsl tmp1, vector_length, 3 // vector_length * 8
lsl tmp2, vector_length, 5 // vector_length * 32
.p2align 3
1: cmp rest, tmp2
b.cc L(unroll8)
st1b_unroll
add dst, dst, tmp1
st1b_unroll
add dst, dst, tmp1
st1b_unroll
add dst, dst, tmp1
st1b_unroll
add dst, dst, tmp1
sub rest, rest, tmp2
b 1b
L(unroll8):
lsl tmp1, vector_length, 3
.p2align 3
1: cmp rest, tmp1
b.cc L(last)
st1b_unroll
add dst, dst, tmp1
sub rest, rest, tmp1
b 1b
L(last):
whilelo p0.b, xzr, rest
whilelo p1.b, vector_length, rest
b.last 1f
st1b z0.b, p0, [dst, #0, mul vl]
st1b z0.b, p1, [dst, #1, mul vl]
ret
1: lsl tmp1, vector_length, 1 // vector_length * 2
whilelo p2.b, tmp1, rest
incb tmp1
whilelo p3.b, tmp1, rest
b.last 1f
st1b z0.b, p0, [dst, #0, mul vl]
st1b z0.b, p1, [dst, #1, mul vl]
st1b z0.b, p2, [dst, #2, mul vl]
st1b z0.b, p3, [dst, #3, mul vl]
ret
1: lsl tmp1, vector_length, 2 // vector_length * 4
whilelo p4.b, tmp1, rest
incb tmp1
whilelo p5.b, tmp1, rest
incb tmp1
whilelo p6.b, tmp1, rest
incb tmp1
whilelo p7.b, tmp1, rest
st1b z0.b, p0, [dst, #0, mul vl]
st1b z0.b, p1, [dst, #1, mul vl]
st1b z0.b, p2, [dst, #2, mul vl]
st1b z0.b, p3, [dst, #3, mul vl]
st1b z0.b, p4, [dst, #4, mul vl]
st1b z0.b, p5, [dst, #5, mul vl]
st1b z0.b, p6, [dst, #6, mul vl]
st1b z0.b, p7, [dst, #7, mul vl]
ret
L(L1_prefetch): // if rest >= L1_SIZE
.p2align 3
1: st1b_unroll 0, 3
prfm pstl1keep, [dst, PF_DIST_L1]
st1b_unroll 4, 7
prfm pstl1keep, [dst, PF_DIST_L1 + CACHE_LINE_SIZE]
add dst, dst, CACHE_LINE_SIZE * 2
sub rest, rest, CACHE_LINE_SIZE * 2
cmp rest, L1_SIZE
b.ge 1b
cbnz rest, L(unroll32)
ret
L(L2):
// align dst address at vector_length byte boundary
sub tmp1, vector_length, 1
ands tmp2, dst, tmp1
// if vl_remainder == 0
b.eq 1f
sub vl_remainder, vector_length, tmp2
// process remainder until the first vector_length boundary
whilelt p2.b, xzr, vl_remainder
st1b z0.b, p2, [dst]
add dst, dst, vl_remainder
sub rest, rest, vl_remainder
// align dstin address at CACHE_LINE_SIZE byte boundary
1: mov tmp1, CACHE_LINE_SIZE
ands tmp2, dst, CACHE_LINE_SIZE - 1
// if cl_remainder == 0
b.eq L(L2_dc_zva)
sub cl_remainder, tmp1, tmp2
// process remainder until the first CACHE_LINE_SIZE boundary
mov tmp1, xzr // index
2: whilelt p2.b, tmp1, cl_remainder
st1b z0.b, p2, [dst, tmp1]
incb tmp1
cmp tmp1, cl_remainder
b.lo 2b
add dst, dst, cl_remainder
sub rest, rest, cl_remainder
L(L2_dc_zva):
// zero fill
mov tmp1, dst
dc_zva (ZF_DIST / CACHE_LINE_SIZE) - 1
mov zva_len, ZF_DIST
add tmp1, zva_len, CACHE_LINE_SIZE * 2
// unroll
.p2align 3
1: st1b_unroll 0, 3
add tmp2, dst, zva_len
dc zva, tmp2
st1b_unroll 4, 7
add tmp2, tmp2, CACHE_LINE_SIZE
dc zva, tmp2
add dst, dst, CACHE_LINE_SIZE * 2
sub rest, rest, CACHE_LINE_SIZE * 2
cmp rest, tmp1 // ZF_DIST + CACHE_LINE_SIZE * 2
b.ge 1b
cbnz rest, L(unroll8)
ret
END (MEMSET)
libc_hidden_builtin_def (MEMSET)
#endif /* IS_IN (libc) */
#endif /* HAVE_AARCH64_SVE_ASM */