glibc/sysdeps/x86_64/fpu/e_powl.S
Joseph Myers c898991d8b Fix x86_64 / x86 powl inaccuracy for integer exponents (bug 19848).
Bug 19848 reports cases where powl on x86 / x86_64 has error
accumulation, for small integer exponents, larger than permitted by
glibc's accuracy goals, at least in some rounding modes.  This patch
further restricts the exponent range for which the
small-integer-exponent logic is used to limit the possible error
accumulation.

Tested for x86_64 and x86 and ulps updated accordingly.

	[BZ #19848]
	* sysdeps/i386/fpu/e_powl.S (p3): Rename to p2 and change value
	from 8 to 4.
	(__ieee754_powl): Compare integer exponent against 4 not 8.
	* sysdeps/x86_64/fpu/e_powl.S (p3): Rename to p2 and change value
	from 8 to 4.
	(__ieee754_powl): Compare integer exponent against 4 not 8.
	* math/auto-libm-test-in: Add more tests of pow.
	* math/auto-libm-test-out: Regenerated.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2016-03-24 01:32:52 +00:00

415 lines
8.8 KiB
ArmAsm
Raw Blame History

/* ix87 specific implementation of pow function.
Copyright (C) 1996-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <machine/asm.h>
#include <x86_64-math-asm.h>
.section .rodata.cst8,"aM",@progbits,8
.p2align 3
.type one,@object
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
.type p2,@object
p2: .byte 0, 0, 0, 0, 0, 0, 0x10, 0x40
ASM_SIZE_DIRECTIVE(p2)
.type p63,@object
p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
ASM_SIZE_DIRECTIVE(p63)
.type p64,@object
p64: .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x43
ASM_SIZE_DIRECTIVE(p64)
.type p78,@object
p78: .byte 0, 0, 0, 0, 0, 0, 0xd0, 0x44
ASM_SIZE_DIRECTIVE(p78)
.type pm79,@object
pm79: .byte 0, 0, 0, 0, 0, 0, 0, 0x3b
ASM_SIZE_DIRECTIVE(pm79)
.section .rodata.cst16,"aM",@progbits,16
.p2align 3
.type infinity,@object
inf_zero:
infinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
ASM_SIZE_DIRECTIVE(infinity)
.type zero,@object
zero: .double 0.0
ASM_SIZE_DIRECTIVE(zero)
.type minf_mzero,@object
minf_mzero:
minfinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
mzero:
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
ASM_SIZE_DIRECTIVE(minf_mzero)
DEFINE_LDBL_MIN
#ifdef PIC
# define MO(op) op##(%rip)
#else
# define MO(op) op
#endif
.text
ENTRY(__ieee754_powl)
fldt 24(%rsp) // y
fxam
fnstsw
movb %ah, %dl
andb $0x45, %ah
cmpb $0x40, %ah // is y == 0 ?
je 11f
cmpb $0x05, %ah // is y == <EFBFBD>inf ?
je 12f
cmpb $0x01, %ah // is y == NaN ?
je 30f
fldt 8(%rsp) // x : y
fxam
fnstsw
movb %ah, %dh
andb $0x45, %ah
cmpb $0x40, %ah
je 20f // x is <EFBFBD>0
cmpb $0x05, %ah
je 15f // x is <EFBFBD>inf
cmpb $0x01, %ah
je 31f // x is NaN
fxch // y : x
/* fistpll raises invalid exception for |y| >= 1L<<63. */
fldl MO(p63) // 1L<<63 : y : x
fld %st(1) // y : 1L<<63 : y : x
fabs // |y| : 1L<<63 : y : x
fcomip %st(1), %st // 1L<<63 : y : x
fstp %st(0) // y : x
jnc 2f
/* First see whether `y' is a natural number. In this case we
can use a more precise algorithm. */
fld %st // y : y : x
fistpll -8(%rsp) // y : x
fildll -8(%rsp) // int(y) : y : x
fucomip %st(1),%st // y : x
je 9f
// If y has absolute value at most 0x1p-79, then any finite
// nonzero x will result in 1. Saturate y to those bounds to
// avoid underflow in the calculation of y*log2(x).
fldl MO(pm79) // 0x1p-79 : y : x
fld %st(1) // y : 0x1p-79 : y : x
fabs // |y| : 0x1p-79 : y : x
fcomip %st(1), %st // 0x1p-79 : y : x
fstp %st(0) // y : x
jnc 3f
fstp %st(0) // pop y
fldl MO(pm79) // 0x1p-79 : x
testb $2, %dl
jnz 3f // y > 0
fchs // -0x1p-79 : x
jmp 3f
9: /* OK, we have an integer value for y. Unless very small
(we use < 4), use the algorithm for real exponent to avoid
accumulation of errors. */
fldl MO(p2) // 4 : y : x
fld %st(1) // y : 4 : y : x
fabs // |y| : 4 : y : x
fcomip %st(1), %st // 4 : y : x
fstp %st(0) // y : x
jnc 3f
mov -8(%rsp),%eax
mov -4(%rsp),%edx
orl $0, %edx
fstp %st(0) // x
jns 4f // y >= 0, jump
fdivrl MO(one) // 1/x (now referred to as x)
negl %eax
adcl $0, %edx
negl %edx
4: fldl MO(one) // 1 : x
fxch
/* If y is even, take the absolute value of x. Otherwise,
ensure all intermediate values that might overflow have the
sign of x. */
testb $1, %al
jnz 6f
fabs
6: shrdl $1, %edx, %eax
jnc 5f
fxch
fabs
fmul %st(1) // x : ST*x
fxch
5: fld %st // x : x : ST*x
fabs // |x| : x : ST*x
fmulp // |x|*x : ST*x
shrl $1, %edx
movl %eax, %ecx
orl %edx, %ecx
jnz 6b
fstp %st(0) // ST*x
LDBL_CHECK_FORCE_UFLOW_NONNAN
ret
/* y is <20>NAN */
30: fldt 8(%rsp) // x : y
fldl MO(one) // 1.0 : x : y
fucomip %st(1),%st // x : y
je 31f
fxch // y : x
31: fstp %st(1)
ret
.align ALIGNARG(4)
2: // y is a large integer (absolute value at least 1L<<63).
// If y has absolute value at least 1L<<78, then any finite
// nonzero x will result in 0 (underflow), 1 or infinity (overflow).
// Saturate y to those bounds to avoid overflow in the calculation
// of y*log2(x).
fldl MO(p78) // 1L<<78 : y : x
fld %st(1) // y : 1L<<78 : y : x
fabs // |y| : 1L<<78 : y : x
fcomip %st(1), %st // 1L<<78 : y : x
fstp %st(0) // y : x
jc 3f
fstp %st(0) // pop y
fldl MO(p78) // 1L<<78 : x
testb $2, %dl
jz 3f // y > 0
fchs // -(1L<<78) : x
.align ALIGNARG(4)
3: /* y is a real number. */
subq $40, %rsp
cfi_adjust_cfa_offset (40)
fstpt 16(%rsp) // x
fstpt (%rsp) // <empty>
call HIDDEN_JUMPTARGET (__powl_helper) // <result>
addq $40, %rsp
cfi_adjust_cfa_offset (-40)
ret
// pow(x,<EFBFBD>0) = 1
.align ALIGNARG(4)
11: fstp %st(0) // pop y
fldl MO(one)
ret
// y == <EFBFBD>inf
.align ALIGNARG(4)
12: fstp %st(0) // pop y
fldl MO(one) // 1
fldt 8(%rsp) // x : 1
fabs // abs(x) : 1
fucompp // < 1, == 1, or > 1
fnstsw
andb $0x45, %ah
cmpb $0x45, %ah
je 13f // jump if x is NaN
cmpb $0x40, %ah
je 14f // jump if |x| == 1
shlb $1, %ah
xorb %ah, %dl
andl $2, %edx
#ifdef PIC
lea inf_zero(%rip),%rcx
fldl (%rcx, %rdx, 4)
#else
fldl inf_zero(,%rdx, 4)
#endif
ret
.align ALIGNARG(4)
14: fldl MO(one)
ret
.align ALIGNARG(4)
13: fldt 8(%rsp) // load x == NaN
ret
.align ALIGNARG(4)
// x is <EFBFBD>inf
15: fstp %st(0) // y
testb $2, %dh
jz 16f // jump if x == +inf
// fistpll raises invalid exception for |y| >= 1L<<63, but y
// may be odd unless we know |y| >= 1L<<64.
fldl MO(p64) // 1L<<64 : y
fld %st(1) // y : 1L<<64 : y
fabs // |y| : 1L<<64 : y
fcomip %st(1), %st // 1L<<64 : y
fstp %st(0) // y
jnc 16f
fldl MO(p63) // p63 : y
fxch // y : p63
fprem // y%p63 : p63
fstp %st(1) // y%p63
// We must find out whether y is an odd integer.
fld %st // y : y
fistpll -8(%rsp) // y
fildll -8(%rsp) // int(y) : y
fucomip %st(1),%st
ffreep %st // <empty>
jne 17f
// OK, the value is an integer, but is it odd?
mov -8(%rsp), %eax
mov -4(%rsp), %edx
andb $1, %al
jz 18f // jump if not odd
// It's an odd integer.
shrl $31, %edx
#ifdef PIC
lea minf_mzero(%rip),%rcx
fldl (%rcx, %rdx, 8)
#else
fldl minf_mzero(,%rdx, 8)
#endif
ret
.align ALIGNARG(4)
16: fcompl MO(zero)
fnstsw
shrl $5, %eax
andl $8, %eax
#ifdef PIC
lea inf_zero(%rip),%rcx
fldl (%rcx, %rax, 1)
#else
fldl inf_zero(,%rax, 1)
#endif
ret
.align ALIGNARG(4)
17: shll $30, %edx // sign bit for y in right position
18: shrl $31, %edx
#ifdef PIC
lea inf_zero(%rip),%rcx
fldl (%rcx, %rdx, 8)
#else
fldl inf_zero(,%rdx, 8)
#endif
ret
.align ALIGNARG(4)
// x is <EFBFBD>0
20: fstp %st(0) // y
testb $2, %dl
jz 21f // y > 0
// x is <EFBFBD>0 and y is < 0. We must find out whether y is an odd integer.
testb $2, %dh
jz 25f
// fistpll raises invalid exception for |y| >= 1L<<63, but y
// may be odd unless we know |y| >= 1L<<64.
fldl MO(p64) // 1L<<64 : y
fld %st(1) // y : 1L<<64 : y
fabs // |y| : 1L<<64 : y
fcomip %st(1), %st // 1L<<64 : y
fstp %st(0) // y
jnc 25f
fldl MO(p63) // p63 : y
fxch // y : p63
fprem // y%p63 : p63
fstp %st(1) // y%p63
fld %st // y : y
fistpll -8(%rsp) // y
fildll -8(%rsp) // int(y) : y
fucomip %st(1),%st
ffreep %st // <empty>
jne 26f
// OK, the value is an integer, but is it odd?
mov -8(%rsp),%eax
mov -4(%rsp),%edx
andb $1, %al
jz 27f // jump if not odd
// It's an odd integer.
// Raise divide-by-zero exception and get minus infinity value.
fldl MO(one)
fdivl MO(zero)
fchs
ret
25: fstp %st(0)
26:
27: // Raise divide-by-zero exception and get infinity value.
fldl MO(one)
fdivl MO(zero)
ret
.align ALIGNARG(4)
// x is <EFBFBD>0 and y is > 0. We must find out whether y is an odd integer.
21: testb $2, %dh
jz 22f
// fistpll raises invalid exception for |y| >= 1L<<63, but y
// may be odd unless we know |y| >= 1L<<64.
fldl MO(p64) // 1L<<64 : y
fxch // y : 1L<<64
fcomi %st(1), %st // y : 1L<<64
fstp %st(1) // y
jnc 22f
fldl MO(p63) // p63 : y
fxch // y : p63
fprem // y%p63 : p63
fstp %st(1) // y%p63
fld %st // y : y
fistpll -8(%rsp) // y
fildll -8(%rsp) // int(y) : y
fucomip %st(1),%st
ffreep %st // <empty>
jne 23f
// OK, the value is an integer, but is it odd?
mov -8(%rsp),%eax
mov -4(%rsp),%edx
andb $1, %al
jz 24f // jump if not odd
// It's an odd integer.
fldl MO(mzero)
ret
22: fstp %st(0)
23:
24: fldl MO(zero)
ret
END(__ieee754_powl)
strong_alias (__ieee754_powl, __powl_finite)