mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-03 08:11:08 +00:00
145 lines
4.3 KiB
C
145 lines
4.3 KiB
C
/* @(#)e_acos.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
for performance improvement on pipelined processors.
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
|
|
#endif
|
|
|
|
/* __ieee754_acos(x)
|
|
* Method :
|
|
* acos(x) = pi/2 - asin(x)
|
|
* acos(-x) = pi/2 + asin(x)
|
|
* For |x|<=0.5
|
|
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
|
* For x>0.5
|
|
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
|
* = 2asin(sqrt((1-x)/2))
|
|
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
|
* = 2f + (2c + 2s*z*R(z))
|
|
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
|
* for f so that f+c ~ sqrt(z).
|
|
* For x<-0.5
|
|
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
|
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
|
*
|
|
* Special cases:
|
|
* if x is NaN, return x itself;
|
|
* if |x|>1, return NaN with invalid signal.
|
|
*
|
|
* Function needed: __ieee754_sqrt
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
#define one qS[0]
|
|
|
|
#ifdef __STDC__
|
|
static const double
|
|
#else
|
|
static double
|
|
#endif
|
|
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
-3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
-4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
|
|
qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
-6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
#ifdef __STDC__
|
|
double __ieee754_acos(double x)
|
|
#else
|
|
double __ieee754_acos(x)
|
|
double x;
|
|
#endif
|
|
{
|
|
double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,z2,z4,z6;
|
|
int32_t hx,ix;
|
|
GET_HIGH_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
|
u_int32_t lx;
|
|
GET_LOW_WORD(lx,x);
|
|
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
|
|
if(hx>0) return 0.0; /* acos(1) = 0 */
|
|
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
|
}
|
|
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
|
}
|
|
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
|
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
|
z = x*x;
|
|
#ifdef DO_NOT_USE_THIS
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
#else
|
|
p1 = z*pS[0]; z2=z*z;
|
|
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
q1 = one+z*qS[1];
|
|
q2 = qS[2]+z*qS[3];
|
|
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
q = q1 + z2*q2 + z4*qS[4];
|
|
#endif
|
|
r = p/q;
|
|
return pio2_hi - (x - (pio2_lo-x*r));
|
|
} else if (hx<0) { /* x < -0.5 */
|
|
z = (one+x)*0.5;
|
|
#ifdef DO_NOT_USE_THIS
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
#else
|
|
p1 = z*pS[0]; z2=z*z;
|
|
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
q1 = one+z*qS[1];
|
|
q2 = qS[2]+z*qS[3];
|
|
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
q = q1 + z2*q2 + z4*qS[4];
|
|
#endif
|
|
s = __ieee754_sqrt(z);
|
|
r = p/q;
|
|
w = r*s-pio2_lo;
|
|
return pi - 2.0*(s+w);
|
|
} else { /* x > 0.5 */
|
|
z = (one-x)*0.5;
|
|
s = __ieee754_sqrt(z);
|
|
df = s;
|
|
SET_LOW_WORD(df,0);
|
|
c = (z-df*df)/(s+df);
|
|
#ifdef DO_NOT_USE_THIS
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
#else
|
|
p1 = z*pS[0]; z2=z*z;
|
|
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
q1 = one+z*qS[1];
|
|
q2 = qS[2]+z*qS[3];
|
|
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
q = q1 + z2*q2 + z4*qS[4];
|
|
#endif
|
|
r = p/q;
|
|
w = r*s+c;
|
|
return 2.0*(df+w);
|
|
}
|
|
}
|