glibc/sysdeps/ieee754/ldbl-128ibm/s_ctanl.c

122 lines
3.4 KiB
C

/* Complex tangent function for long double. IBM extended format version.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_ldbl_opt.h>
#include <float.h>
#include <math_private.h>
/* IBM long double GCC builtin sets LDBL_EPSILON == LDBL_DENORM_MIN */
static const long double ldbl_eps = 0x1p-106L;
__complex__ long double
__ctanl (__complex__ long double x)
{
__complex__ long double res;
if (!isfinite (__real__ x) || !isfinite (__imag__ x))
{
if (__isinfl (__imag__ x))
{
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (__isinf_nsl (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinrx, cosrx;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2.0L);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
__sincosl (__real__ x, &sinrx, &cosrx);
if (fabsl (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
long double exp_2t = __ieee754_expl (2 * t);
__imag__ res = __copysignl (1.0L, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsl (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expl (2.0L * __imag__ x);
}
else
{
long double sinhix, coshix;
if (fabsl (__imag__ x) > LDBL_MIN)
{
sinhix = __ieee754_sinhl (__imag__ x);
coshix = __ieee754_coshl (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0L;
}
if (fabsl (sinhix) > fabsl (cosrx) * ldbl_eps)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * (cosrx / den);
__imag__ res = sinhix * (coshix / den);
}
/* __gcc_qmul does not respect -0.0 so we need the following fixup. */
if ((__real__ res == 0.0L) && (__real__ x == 0.0L))
__real__ res = __real__ x;
if ((__real__ res == 0.0L) && (__imag__ x == 0.0L))
__imag__ res = __imag__ x;
}
return res;
}
long_double_symbol (libm, __ctanl, ctanl);