glibc/sysdeps/ieee754/dbl-64/s_tan.c
Joseph Myers 527cd19c3d Make dbl-64 atan and tan into weak aliases.
This patch converts the dbl-64 implementations of atan and tan into
weak aliases of __atan and __tan, in preparation for making them use
libm_alias_double.  Consequent changes are made to the x86_64
multiarch versions wrapping round them (with the dbl-64 functions,
like other such functions, being made not to define their aliases at
all if __atan or __tan are defined as macros by an including file).

Tested for x86_64, and with build-many-glibcs.py.

	* sysdeps/ieee754/dbl-64/s_atan.c (atan): Rename to __atan and
	define as weak alias of __atan.  Do not define any aliases if
	[__atan].
	[NO_LONG_DOUBLE] (__atanl): Define as strong alias of __atan.
	[NO_LONG_DOUBLE] (atanl): Define as weak alias of __atanl.
	* sysdeps/ieee754/dbl-64/s_tan.c (tan): Rename to __tan and define
	as weak alias of __tan.  Do not define any aliases if [__tan].
	[NO_LONG_DOUBLE] (__tanl): Define as strong alias of __tan.
	[NO_LONG_DOUBLE] (tanl): Define as weak alias of __tanl.
	* sysdeps/x86_64/fpu/multiarch/s_atan-avx.c (atan): Rename to
	__atan.
	* sysdeps/x86_64/fpu/multiarch/s_atan-fma.c (atan): Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_atan-fma4.c (atan): Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_atan.c (atan): Rename to __atan
	and define as weak alias of __atan.
	* sysdeps/x86_64/fpu/multiarch/s_tan-avx.c (tan): Rename to
	__atan.
	* sysdeps/x86_64/fpu/multiarch/s_tan-fma.c (tan): Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_tan-fma4.c (tan): Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_tan.c (tan): Rename to __tan and
	define as weak alias of __tan.
2017-10-02 20:20:52 +00:00

853 lines
22 KiB
C

/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2017 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************/
/* MODULE_NAME: utan.c */
/* */
/* FUNCTIONS: utan */
/* tanMp */
/* */
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */
/* branred.c sincos32.c mptan.c */
/* utan.tbl */
/* */
/* An ultimate tan routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of tan(x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include <errno.h>
#include <float.h>
#include "endian.h"
#include <dla.h>
#include "mpa.h"
#include "MathLib.h"
#include <math.h>
#include <math_private.h>
#include <fenv.h>
#include <stap-probe.h>
#ifndef SECTION
# define SECTION
#endif
static double tanMp (double);
void __mptan (double, mp_no *, int);
double
SECTION
__tan (double x)
{
#include "utan.h"
#include "utan.tbl"
int ux, i, n;
double a, da, a2, b, db, c, dc, c1, cc1, c2, cc2, c3, cc3, fi, ffi, gi, pz,
s, sy, t, t1, t2, t3, t4, t7, t8, t9, t10, w, x2, xn, xx2, y, ya,
yya, z0, z, zz, z2, zz2;
#ifndef DLA_FMS
double t5, t6;
#endif
int p;
number num, v;
mp_no mpa, mpt1, mpt2;
double retval;
int __branred (double, double *, double *);
int __mpranred (double, mp_no *, int);
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
/* x=+-INF, x=NaN */
num.d = x;
ux = num.i[HIGH_HALF];
if ((ux & 0x7ff00000) == 0x7ff00000)
{
if ((ux & 0x7fffffff) == 0x7ff00000)
__set_errno (EDOM);
retval = x - x;
goto ret;
}
w = (x < 0.0) ? -x : x;
/* (I) The case abs(x) <= 1.259e-8 */
if (w <= g1.d)
{
math_check_force_underflow_nonneg (w);
retval = x;
goto ret;
}
/* (II) The case 1.259e-8 < abs(x) <= 0.0608 */
if (w <= g2.d)
{
/* First stage */
x2 = x * x;
t2 = d9.d + x2 * d11.d;
t2 = d7.d + x2 * t2;
t2 = d5.d + x2 * t2;
t2 = d3.d + x2 * t2;
t2 *= x * x2;
if ((y = x + (t2 - u1.d * t2)) == x + (t2 + u1.d * t2))
{
retval = y;
goto ret;
}
/* Second stage */
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
EMULV (x, x, x2, xx2, t1, t2, t3, t4, t5);
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (x, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (x, 0.0, c2, cc2, c1, cc1, t1, t2);
if ((y = c1 + (cc1 - u2.d * c1)) == c1 + (cc1 + u2.d * c1))
{
retval = y;
goto ret;
}
retval = tanMp (x);
goto ret;
}
/* (III) The case 0.0608 < abs(x) <= 0.787 */
if (w <= g3.d)
{
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * w));
z = w - xfg[i][0].d;
z2 = z * z;
s = (x < 0.0) ? -1 : 1;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u3.d)) == fi + (t2 + fi * u3.d))
{
retval = (s * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua3.d + t3 * ub3.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (s * y);
goto ret;
}
/* Second stage */
ffi = xfg[i][3].d;
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
EMULV (z, z, z2, zz2, t1, t2, t3, t4, t5);
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, 0.0, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u4.d * c3)) == c3 + (cc3 + u4.d * c3))
{
retval = (s * y);
goto ret;
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 0.787 < abs(x) <= 25 */
if (w <= g4.d)
{
/* Range reduction by algorithm i */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * mp3.d;
a = t1 - da;
da = (t1 - a) - da;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c + (dc - u6.d * c)) == c + (dc + u6.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u5.d * a)) == a + (t2 + u5.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
/* Range reduction by algorithm ii */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * pp3.d;
t = t1 - da;
da = (t1 - t) - da;
t1 = xn * pp4.d;
a = t - t1;
da = ((t - a) - t1) + da;
/* Second stage */
EADD (a, da, t1, t2);
a = t1;
da = t2;
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10);
if ((y = c2 + (cc2 - u8.d * c2)) == c2 + (cc2 + u8.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u7.d * c1)) == c1 + (cc1 + u7.d * c1))
{
retval = y;
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u10.d)) == gi - (t2 + gi * u10.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua10.d + t3 * ub10.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u9.d)) == fi + (t2 + fi * u9.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua9.d + t3 * ub9.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz)
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u12.d * c3)) == c3 + (cc3 + u12.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u11.d * c3)) == c3 + (cc3 + u11.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 25 < abs(x) <= 1e8 */
if (w <= g5.d)
{
/* Range reduction by algorithm ii */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * pp3.d;
t = t1 - da;
da = (t1 - t) - da;
t1 = xn * pp4.d;
a = t - t1;
da = ((t - a) - t1) + da;
EADD (a, da, t1, t2);
a = t1;
da = t2;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c + (dc - u14.d * c)) == c + (dc + u14.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u13.d * a)) == a + (t2 + u13.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10);
if ((y = c2 + (cc2 - u16.d * c2)) == c2 + (cc2 + u16.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u15.d * c1)) == c1 + (cc1 + u15.d * c1))
{
retval = (y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u18.d)) == gi - (t2 + gi * u18.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua18.d + t3 * ub18.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u17.d)) == fi + (t2 + fi * u17.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua17.d + t3 * ub17.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz);
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u20.d * c3)) == c3 + (cc3 + u20.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u19.d * c3)) == c3 + (cc3 + u19.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 1e8 < abs(x) < 2**1024 */
/* Range reduction by algorithm iii */
n = (__branred (x, &a, &da)) & 0x00000001;
EADD (a, da, t1, t2);
a = t1;
da = t2;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c + (dc - u22.d * c)) == c + (dc + u22.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u21.d * a)) == a + (t2 + u21.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
/* Reduction by algorithm iv */
p = 10;
n = (__mpranred (x, &mpa, p)) & 0x00000001;
__mp_dbl (&mpa, &a, p);
__dbl_mp (a, &mpt1, p);
__sub (&mpa, &mpt1, &mpt2, p);
__mp_dbl (&mpt2, &da, p);
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c2 + (cc2 - u24.d * c2)) == c2 + (cc2 + u24.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u23.d * c1)) == c1 + (cc1 + u23.d * c1))
{
retval = y;
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u26.d)) == gi - (t2 + gi * u26.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua26.d + t3 * ub26.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u25.d)) == fi + (t2 + fi * u25.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua25.d + t3 * ub25.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz);
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u28.d * c3)) == c3 + (cc3 + u28.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u27.d * c3)) == c3 + (cc3 + u27.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
ret:
return retval;
}
/* multiple precision stage */
/* Convert x to multi precision number,compute tan(x) by mptan() routine */
/* and converts result back to double */
static double
SECTION
tanMp (double x)
{
int p;
double y;
mp_no mpy;
p = 32;
__mptan (x, &mpy, p);
__mp_dbl (&mpy, &y, p);
LIBC_PROBE (slowtan, 2, &x, &y);
return y;
}
#ifndef __tan
weak_alias (__tan, tan)
# ifdef NO_LONG_DOUBLE
strong_alias (__tan, __tanl)
weak_alias (__tanl, tanl)
# endif
#endif