glibc/math/s_cexp_template.c
Joseph Myers 418d99e622 Move fenv.h soft-float inlines from fenv_private.h to include/fenv.h.
<fenv_private.h> has inline versions of various <fenv.h> functions,
and their __fe* variants, for systems (generally soft-float) without
support for floating-point exceptions, rounding modes or both.

Having these inlines in a separate header introduces a risk of a
source file including <fenv.h> and compiling OK on x86_64, but failing
to compile (because the feraiseexcept inline is actually a macro that
discards its argument, to avoid the need for #ifdef FE_INVALID
conditionals), or not being properly optimized, on systems without the
exceptions and rounding modes support (when these inlines were in
math_private.h, we had a few cases where this broke the build because
there was no obvious reason for a file to need math_private.h and it
didn't need that header on x86_64).  By moving those inlines to
include/fenv.h, this risk can be avoided, and fenv_private.h becomes
more clearly defined as specifically the header for the internal
libc_fe* and SET_RESTORE_ROUND* interfaces.

This patch makes that move, removing fenv_private.h includes that are
no longer needed (or replacing them by fenv.h includes in a few cases
that didn't already have such an include).

Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.

	* sysdeps/generic/fenv_private.h [FE_ALL_EXCEPT == 0]: Move this
	code ....
	[!FE_HAVE_ROUNDING_MODES]: And this code ....
	* include/fenv.h [!_ISOMAC]: ... to here.
	* math/fraiseexcpt.c (__feraiseexcept): Undefine as macro.
	(feraiseexcept): Likewise.
	* math/fromfp.h: Do not include <fenv_private.h>.
	* math/s_cexp_template.c: Likewise.
	* math/s_csin_template.c: Likewise.
	* math/s_csinh_template.c: Likewise.
	* math/s_ctan_template.c: Likewise.
	* math/s_ctanh_template.c: Likewise.
	* math/s_iseqsig_template.c: Likewise.
	* math/w_acos_compat.c: Likewise.
	* math/w_acosf_compat.c: Likewise.
	* math/w_acosl_compat.c: Likewise.
	* math/w_asin_compat.c: Likewise.
	* math/w_asinf_compat.c: Likewise.
	* math/w_asinl_compat.c: Likewise.
	* math/w_j0_compat.c: Likewise.
	* math/w_j0f_compat.c: Likewise.
	* math/w_j0l_compat.c: Likewise.
	* math/w_j1_compat.c: Likewise.
	* math/w_j1f_compat.c: Likewise.
	* math/w_j1l_compat.c: Likewise.
	* math/w_jn_compat.c: Likewise.
	* math/w_jnf_compat.c: Likewise.
	* math/w_log10_compat.c: Likewise.
	* math/w_log10f_compat.c: Likewise.
	* math/w_log10l_compat.c: Likewise.
	* math/w_log2_compat.c: Likewise.
	* math/w_log2f_compat.c: Likewise.
	* math/w_log2l_compat.c: Likewise.
	* math/w_log_compat.c: Likewise.
	* math/w_logf_compat.c: Likewise.
	* math/w_logl_compat.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
	* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
	* sysdeps/ieee754/k_standardl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
	* math/w_ilogb_template.c: Include <fenv.h> instead of
	<fenv_private.h>.
	* math/w_llogb_template.c: Likewise.
	* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
	* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
2018-09-04 19:52:06 +00:00

152 lines
3.7 KiB
C

/* Return value of complex exponential function for a float type.
Copyright (C) 1997-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__cexp) (CFLOAT x)
{
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (__real__ x > t)
{
FLOAT exp_t = M_EXP (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
FLOAT exp_val = M_EXP (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (value, cosix);
__imag__ retval = M_COPYSIGN (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x - __imag__ x;
}
else
{
__real__ retval = 0;
__imag__ retval = M_COPYSIGN (0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = M_NAN;
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = M_NAN;
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
declare_mgen_alias (__cexp, cexp)