mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-25 12:11:10 +00:00
7ec903e028
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the exp2m1 and exp10m1 functions (exp2(x)-1 and exp10(x)-1, like expm1). As with other such functions, these use type-generic templates that could be replaced with faster and more accurate type-specific implementations in future. Test inputs are copied from those for expm1, plus some additions close to the overflow threshold (copied from exp2 and exp10) and also some near the underflow threshold. exp2m1 has the unusual property of having an input (M_MAX_EXP) where whether the function overflows (under IEEE semantics) depends on the rounding mode. Although these could reasonably be XFAILed in the testsuite (as we do in some cases for arguments very close to a function's overflow threshold when an error of a few ulps in the implementation can result in the implementation not agreeing with an ideal one on whether overflow takes place - the testsuite isn't smart enough to handle this automatically), since these functions aren't required to be correctly rounding, I made the implementation check for and handle this case specially. The Makefile ordering expected by lint-makefiles for the new functions is a bit peculiar, but I implemented it in this patch so that the test passes; I don't know why log2 also needed moving in one Makefile variable setting when it didn't in my previous patches, but the failure showed a different place was expected for that function as well. The powerpc64le IFUNC setup seems not to be as self-contained as one might hope; it shouldn't be necessary to add IFUNCs for new functions such as these simply to get them building, but without setting up IFUNCs for the new functions, there were undefined references to __GI___expm1f128 (that IFUNC machinery results in no such function being defined, but doesn't stop include/math.h from doing the redirection resulting in the exp2m1f128 and exp10m1f128 implementations expecting to call it). Tested for x86_64 and x86, and with build-many-glibcs.py.
452 lines
14 KiB
C
452 lines
14 KiB
C
/* Prototype declarations for math functions; helper file for <math.h>.
|
|
Copyright (C) 1996-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/* NOTE: Because of the special way this file is used by <math.h>, this
|
|
file must NOT be protected from multiple inclusion as header files
|
|
usually are.
|
|
|
|
This file provides prototype declarations for the math functions.
|
|
Most functions are declared using the macro:
|
|
|
|
__MATHCALL (NAME,[_r], (ARGS...));
|
|
|
|
This means there is a function `NAME' returning `double' and a function
|
|
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
|
|
prototype, that is actually `double' in the prototype for `NAME' and
|
|
`float' in the prototype for `NAMEf'. Reentrant variant functions are
|
|
called `NAME_r' and `NAMEf_r'.
|
|
|
|
Functions returning other types like `int' are declared using the macro:
|
|
|
|
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
|
|
|
|
This is just like __MATHCALL but for a function returning `TYPE'
|
|
instead of `_Mdouble_'. In all of these cases, there is still
|
|
both a `NAME' and a `NAMEf' that takes `float' arguments.
|
|
|
|
Note that there must be no whitespace before the argument passed for
|
|
NAME, to make token pasting work with -traditional. */
|
|
|
|
#ifndef _MATH_H
|
|
# error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
|
|
#endif
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
__MATHCALL_VEC (acos,, (_Mdouble_ __x));
|
|
/* Arc sine of X. */
|
|
__MATHCALL_VEC (asin,, (_Mdouble_ __x));
|
|
/* Arc tangent of X. */
|
|
__MATHCALL_VEC (atan,, (_Mdouble_ __x));
|
|
/* Arc tangent of Y/X. */
|
|
__MATHCALL_VEC (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
|
|
|
|
/* Cosine of X. */
|
|
__MATHCALL_VEC (cos,, (_Mdouble_ __x));
|
|
/* Sine of X. */
|
|
__MATHCALL_VEC (sin,, (_Mdouble_ __x));
|
|
/* Tangent of X. */
|
|
__MATHCALL_VEC (tan,, (_Mdouble_ __x));
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
__MATHCALL_VEC (cosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic sine of X. */
|
|
__MATHCALL_VEC (sinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic tangent of X. */
|
|
__MATHCALL_VEC (tanh,, (_Mdouble_ __x));
|
|
|
|
#ifdef __USE_GNU
|
|
/* Cosine and sine of X. */
|
|
__MATHDECL_VEC (void,sincos,,
|
|
(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Hyperbolic arc cosine of X. */
|
|
__MATHCALL_VEC (acosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc sine of X. */
|
|
__MATHCALL_VEC (asinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc tangent of X. */
|
|
__MATHCALL_VEC (atanh,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
__MATHCALL_VEC (exp,, (_Mdouble_ __x));
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
|
|
|
|
/* X times (two to the EXP power). */
|
|
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
|
|
|
|
/* Natural logarithm of X. */
|
|
__MATHCALL_VEC (log,, (_Mdouble_ __x));
|
|
|
|
/* Base-ten logarithm of X. */
|
|
__MATHCALL_VEC (log10,, (_Mdouble_ __x));
|
|
|
|
/* Break VALUE into integral and fractional parts. */
|
|
__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2));
|
|
|
|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23)
|
|
/* Compute exponent to base ten. */
|
|
__MATHCALL_VEC (exp10,, (_Mdouble_ __x));
|
|
|
|
/* Return exp2(X) - 1. */
|
|
__MATHCALL (exp2m1,, (_Mdouble_ __x));
|
|
|
|
/* Return exp10(X) - 1. */
|
|
__MATHCALL (exp10m1,, (_Mdouble_ __x));
|
|
|
|
/* Return log2(1 + X). */
|
|
__MATHCALL (log2p1,, (_Mdouble_ __x));
|
|
|
|
/* Return log10(1 + X). */
|
|
__MATHCALL (log10p1,, (_Mdouble_ __x));
|
|
|
|
/* Return log(1 + X). */
|
|
__MATHCALL (logp1,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return exp(X) - 1. */
|
|
__MATHCALL_VEC (expm1,, (_Mdouble_ __x));
|
|
|
|
/* Return log(1 + X). */
|
|
__MATHCALL_VEC (log1p,, (_Mdouble_ __x));
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
__MATHCALL (logb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Compute base-2 exponential of X. */
|
|
__MATHCALL_VEC (exp2,, (_Mdouble_ __x));
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
__MATHCALL_VEC (log2,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
__MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return the square root of X. */
|
|
__MATHCALL (sqrt,, (_Mdouble_ __x));
|
|
|
|
#if defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
__MATHCALL_VEC (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the cube root of X. */
|
|
__MATHCALL_VEC (cbrt,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
__MATHCALLX (ceil,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Absolute value of X. */
|
|
__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Largest integer not greater than X. */
|
|
__MATHCALLX (floor,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
#ifdef __USE_MISC
|
|
# if ((!defined __cplusplus \
|
|
|| __cplusplus < 201103L /* isinf conflicts with C++11. */ \
|
|
|| __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't. */ \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return 0 if VALUE is finite or NaN, +1 if it
|
|
is +Infinity, -1 if it is -Infinity. */
|
|
__MATHDECL_ALIAS (int,isinf,, (_Mdouble_ __value), isinf)
|
|
__attribute__ ((__const__));
|
|
# endif
|
|
|
|
# if !__MATH_DECLARING_FLOATN
|
|
/* Return nonzero if VALUE is finite and not NaN. */
|
|
__MATHDECL_ALIAS (int,finite,, (_Mdouble_ __value), finite)
|
|
__attribute__ ((__const__));
|
|
|
|
/* Return the remainder of X/Y. */
|
|
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
|
|
/* Return the fractional part of X after dividing out `ilogb (X)'. */
|
|
__MATHCALL (significand,, (_Mdouble_ __x));
|
|
# endif
|
|
|
|
#endif /* Use misc. */
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return X with its signed changed to Y's. */
|
|
__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return representation of qNaN for double type. */
|
|
__MATHCALL (nan,, (const char *__tagb));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
|
|
# if ((!defined __cplusplus \
|
|
|| __cplusplus < 201103L /* isnan conflicts with C++11. */ \
|
|
|| __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't. */ \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return nonzero if VALUE is not a number. */
|
|
__MATHDECL_ALIAS (int,isnan,, (_Mdouble_ __value), isnan)
|
|
__attribute__ ((__const__));
|
|
# endif
|
|
#endif
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE)
|
|
/* Bessel functions. */
|
|
__MATHCALL (j0,, (_Mdouble_));
|
|
__MATHCALL (j1,, (_Mdouble_));
|
|
__MATHCALL (jn,, (int, _Mdouble_));
|
|
__MATHCALL (y0,, (_Mdouble_));
|
|
__MATHCALL (y1,, (_Mdouble_));
|
|
__MATHCALL (yn,, (int, _Mdouble_));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Error and gamma functions. */
|
|
__MATHCALL_VEC (erf,, (_Mdouble_));
|
|
__MATHCALL_VEC (erfc,, (_Mdouble_));
|
|
__MATHCALL (lgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* True gamma function. */
|
|
__MATHCALL (tgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
|
|
# if !__MATH_DECLARING_FLOATN
|
|
/* Obsolete alias for `lgamma'. */
|
|
__MATHCALL (gamma,, (_Mdouble_));
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef __USE_MISC
|
|
/* Reentrant version of lgamma. This function uses the global variable
|
|
`signgam'. The reentrant version instead takes a pointer and stores
|
|
the value through it. */
|
|
__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
__MATHCALL (rint,, (_Mdouble_ __x));
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
__MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
# if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN
|
|
__MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y));
|
|
# endif
|
|
|
|
# if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN
|
|
/* Return X - epsilon. */
|
|
__MATHCALL (nextdown,, (_Mdouble_ __x));
|
|
/* Return X + epsilon. */
|
|
__MATHCALL (nextup,, (_Mdouble_ __x));
|
|
# endif
|
|
|
|
/* Return the remainder of integer division X / Y with infinite precision. */
|
|
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
# ifdef __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
|
|
# endif
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
__MATHDECL (int,ilogb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN
|
|
/* Like ilogb, but returning long int. */
|
|
__MATHDECL (long int, llogb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
|
|
|
|
/* Round X to integral value in floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
__MATHCALL (nearbyint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHCALLX (round,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
|
|
|
|
|
|
/* Conversion functions. */
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
__MATHDECL (long int,lrint,, (_Mdouble_ __x));
|
|
__extension__
|
|
__MATHDECL (long long int,llrint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHDECL (long int,lround,, (_Mdouble_ __x));
|
|
__extension__
|
|
__MATHDECL (long long int,llround,, (_Mdouble_ __x));
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
# if !__MATH_DECLARING_FLOATN || defined __USE_GNU || !__GLIBC_USE (ISOC23)
|
|
/* Return maximum numeric value from X and Y. */
|
|
__MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
__MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
# endif
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
|
|
#endif /* Use ISO C99. */
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN
|
|
/* Round X to nearest integer value, rounding halfway cases to even. */
|
|
__MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Round X to nearest signed integer value, not raising inexact, with
|
|
control of rounding direction and width of result. */
|
|
__MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest unsigned integer value, not raising inexact,
|
|
with control of rounding direction and width of result. */
|
|
__MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest signed integer value, raising inexact for
|
|
non-integers, with control of rounding direction and width of
|
|
result. */
|
|
__MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest unsigned integer value, raising inexact for
|
|
non-integers, with control of rounding direction and width of
|
|
result. */
|
|
__MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Canonicalize floating-point representation. */
|
|
__MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x));
|
|
#endif
|
|
|
|
#if (__GLIBC_USE (IEC_60559_BFP_EXT) \
|
|
|| (__MATH_DECLARING_FLOATN \
|
|
&& (defined __USE_GNU || !__GLIBC_USE (ISOC23))))
|
|
/* Return value with maximum magnitude. */
|
|
__MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return value with minimum magnitude. */
|
|
__MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
#endif
|
|
|
|
#if __GLIBC_USE (ISOC23)
|
|
/* Return maximum value from X and Y. */
|
|
__MATHCALLX (fmaximum,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return minimum value from X and Y. */
|
|
__MATHCALLX (fminimum,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
__MATHCALLX (fmaximum_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
__MATHCALLX (fminimum_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return value with maximum magnitude. */
|
|
__MATHCALLX (fmaximum_mag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return value with minimum magnitude. */
|
|
__MATHCALLX (fminimum_mag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return numeric value with maximum magnitude. */
|
|
__MATHCALLX (fmaximum_mag_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return numeric value with minimum magnitude. */
|
|
__MATHCALLX (fminimum_mag_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_EXT) || __MATH_DECLARING_FLOATN
|
|
/* Total order operation. */
|
|
__MATHDECL_1 (int, totalorder,, (const _Mdouble_ *__x,
|
|
const _Mdouble_ *__y))
|
|
__attribute_pure__;
|
|
|
|
/* Total order operation on absolute values. */
|
|
__MATHDECL_1 (int, totalordermag,, (const _Mdouble_ *__x,
|
|
const _Mdouble_ *__y))
|
|
__attribute_pure__;
|
|
|
|
/* Get NaN payload. */
|
|
__MATHCALL (getpayload,, (const _Mdouble_ *__x));
|
|
|
|
/* Set quiet NaN payload. */
|
|
__MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload));
|
|
|
|
/* Set signaling NaN payload. */
|
|
__MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload));
|
|
#endif
|
|
|
|
#if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \
|
|
&& __MATH_DECLARING_DOUBLE \
|
|
&& !defined __USE_XOPEN2K8)) \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
|
|
#endif
|