mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-27 07:20:11 +00:00
146 lines
3.6 KiB
C
146 lines
3.6 KiB
C
/* Complex cosine hyperbole function for double.
|
|
Copyright (C) 1997-2012 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ double
|
|
__ccosh (__complex__ double x)
|
|
{
|
|
__complex__ double retval;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__builtin_expect (rcls >= FP_ZERO, 1))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__builtin_expect (icls >= FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
|
|
double sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincos (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
if (fabs (__real__ x) > t)
|
|
{
|
|
double exp_t = __ieee754_exp (t);
|
|
double rx = fabs (__real__ x);
|
|
if (signbit (__real__ x))
|
|
sinix = -sinix;
|
|
rx -= t;
|
|
sinix *= exp_t / 2.0;
|
|
cosix *= exp_t / 2.0;
|
|
if (rx > t)
|
|
{
|
|
rx -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
if (rx > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = DBL_MAX * cosix;
|
|
__imag__ retval = DBL_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
double exp_val = __ieee754_exp (rx);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __ieee754_cosh (__real__ x) * cosix;
|
|
__imag__ retval = __ieee754_sinh (__real__ x) * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__imag__ retval = __real__ x == 0.0 ? 0.0 : __nan ("");
|
|
__real__ retval = __nan ("") + __nan ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else if (rcls == FP_INFINITE)
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__builtin_expect (icls > FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
double sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincos (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
__real__ retval = __copysign (HUGE_VAL, cosix);
|
|
__imag__ retval = (__copysign (HUGE_VAL, sinix)
|
|
* __copysign (1.0, __real__ x));
|
|
}
|
|
else if (icls == FP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = HUGE_VAL;
|
|
__imag__ retval = __imag__ x * __copysign (1.0, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
/* The addition raises the invalid exception. */
|
|
__real__ retval = HUGE_VAL;
|
|
__imag__ retval = __nan ("") + __nan ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __nan ("");
|
|
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan ("");
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
weak_alias (__ccosh, ccosh)
|
|
#ifdef NO_LONG_DOUBLE
|
|
strong_alias (__ccosh, __ccoshl)
|
|
weak_alias (__ccosh, ccoshl)
|
|
#endif
|