glibc/sysdeps/mach/hurd/i386/init-first.c
Roland McGrath 54509b04ce 1998-11-22 Roland McGrath <roland@baalperazim.frob.com>
* sysdeps/mach/hurd/i386/init-first.c (init): Provide temporary storage 
for the per-thread variables of the main user thread to make it 
possible to use malloc as soon as _hurd_preinit_hook has been run. 
For cthreads, copy values to new stack from there. 
For non-cthreads, malloc threadvar array here and copy from temp space. 
(init1): No longer initialize threadvars here. 
(doinit1): Made static void at top level. 
(init): Folded into [PIC] _init or [!PIC] doinit1, since GCC cannot 
inline a function that uses dynamic auto arrays.
1998-11-22 17:32:14 +00:00

320 lines
10 KiB
C

/* Initialization code run first thing by the ELF startup code. For i386/Hurd.
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <hurd.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sysdep.h>
#include <set-hooks.h>
#include "hurdstartup.h"
#include "hurdmalloc.h" /* XXX */
extern void __mach_init (void);
extern void __libc_init (int, char **, char **);
extern void __getopt_clean_environment (char **);
extern void __libc_global_ctors (void);
unsigned int __hurd_threadvar_max;
unsigned long int __hurd_threadvar_stack_offset;
unsigned long int __hurd_threadvar_stack_mask;
#ifndef PIC
int __libc_enable_secure;
#endif
int __libc_multiple_libcs = 1;
extern int __libc_argc;
extern char **__libc_argv;
void *(*_cthread_init_routine) (void); /* Returns new SP to use. */
void (*_cthread_exit_routine) (int status) __attribute__ ((__noreturn__));
/* Things that want to be run before _hurd_init or much anything else.
Importantly, these are called before anything tries to use malloc. */
DEFINE_HOOK (_hurd_preinit_hook, (void));
/* We call this once the Hurd magic is all set up and we are ready to be a
Posixoid program. This does the same things the generic version does. */
static void internal_function
posixland_init (int argc, char **argv)
{
__libc_init (argc, argv, __environ);
/* This is a hack to make the special getopt in GNU libc working. */
__getopt_clean_environment (__environ);
#ifdef PIC
__libc_global_ctors ();
#endif
}
static void
init1 (int argc, char *arg0, ...)
{
char **argv = &arg0;
char **envp = &argv[argc + 1];
struct hurd_startup_data *d;
__libc_argc = argc;
__libc_argv = argv;
__environ = envp;
while (*envp)
++envp;
d = (void *) ++envp;
/* If we are the bootstrap task started by the kernel,
then after the environment pointers there is no Hurd
data block; the argument strings start there. */
if ((void *) d != argv[0])
{
_hurd_init_dtable = d->dtable;
_hurd_init_dtablesize = d->dtablesize;
{
/* Check if the stack we are now on is different from
the one described by _hurd_stack_{base,size}. */
char dummy;
const vm_address_t newsp = (vm_address_t) &dummy;
if (d->stack_size != 0 && (newsp < d->stack_base ||
newsp - d->stack_base > d->stack_size))
/* The new stack pointer does not intersect with the
stack the exec server set up for us, so free that stack. */
__vm_deallocate (__mach_task_self (), d->stack_base, d->stack_size);
}
}
if ((void *) d != argv[0] && (d->portarray || d->intarray))
/* Initialize library data structures, start signal processing, etc. */
_hurd_init (d->flags, argv,
d->portarray, d->portarraysize,
d->intarray, d->intarraysize);
#ifndef PIC
__libc_enable_secure = d->flags & EXEC_SECURE;
#else
posixland_init(argc, argv);
#endif
}
#ifdef PIC
/* This function is called to initialize the shared C library.
It is called just before the user _start code from i386/elf/start.S,
with the stack set up as that code gets it. */
/* NOTE! The linker notices the magical name `_init' and sets the DT_INIT
pointer in the dynamic section based solely on that. It is convention
for this function to be in the `.init' section, but the symbol name is
the only thing that really matters!! */
void
_init (int argc, ...)
{
/* Initialize data structures so we can do RPCs. */
__mach_init ();
RUN_HOOK (_hurd_preinit_hook, ());
#else
/* In statically-linked programs, this function is
called from _hurd_stack_setup (below). */
static void
doinit1 (int argc, ...)
{
#endif
/* This block used to be a separate inline function.
But GCC refuses to inline a function that uses alloca
or dynamically-sized auto arrays. */
{
int *const data = &argc;
char **argv = (void *) (data + 1);
char **envp = &argv[argc + 1];
struct hurd_startup_data *d;
unsigned long int threadvars[__hurd_threadvar_max];
/* Provide temporary storage for thread-specific variables on the startup
stack so the cthreads initialization code can use them for malloc et al,
or so we can use malloc below for the real threadvars array. */
memset (threadvars, 0, sizeof threadvars);
__hurd_threadvar_stack_offset = (unsigned long int) threadvars;
__environ = envp;
while (*envp)
++envp;
d = (void *) ++envp;
/* The user might have defined a value for this, to get more variables.
Otherwise it will be zero on startup. We must make sure it is set
properly before before cthreads initialization, so cthreads can know
how much space to leave for thread variables. */
if (__hurd_threadvar_max < _HURD_THREADVAR_MAX)
__hurd_threadvar_max = _HURD_THREADVAR_MAX;
/* After possibly switching stacks, call `init1' (above) with the user
code as the return address, and the argument data immediately above
that on the stack. */
if (_cthread_init_routine)
{
void *newsp;
struct hurd_startup_data *od;
/* Initialize cthreads, which will allocate us a new
stack to run on. */
newsp = (*_cthread_init_routine) ();
/* Copy per-thread variables from that temporary
area onto the new cthread stack. */
memcpy (__hurd_threadvar_location_from_sp (0, newsp),
threadvars, sizeof threadvars);
/* Copy the argdata from the old stack to the new one. */
newsp = memcpy (newsp - ((char *) &d[1] - (char *) data), data,
(char *) d - (char *) data);
/* Set up the Hurd startup data block immediately following
the argument and environment pointers on the new stack. */
od = (newsp + ((char *) d - (char *) data));
if ((void *) argv[0] == d)
/* We were started up by the kernel with arguments on the stack.
There is no Hurd startup data, so zero the block. */
memset (od, 0, sizeof *od);
else
/* Copy the Hurd startup data block to the new stack. */
*od = *d;
/* Push the user code address on the top of the new stack. It will
be the return address for `init1'; we will jump there with NEWSP
as the stack pointer. */
*--(int *) newsp = data[-1];
((void **) data)[-1] = &&switch_stacks;
/* Force NEWSP into %ecx and &init1 into %eax, which are not restored
by function return. */
asm volatile ("# a %0 c %1" : : "a" (newsp), "c" (&init1));
}
else
{
/* We are not using cthreads, so we will have just a single allocated
area for the per-thread variables of the main user thread. */
void *array;
int usercode;
array = malloc (sizeof threadvars);
if (array == NULL)
__libc_fatal ("Can't allocate single-threaded thread variables.");
/* Copy per-thread variables from the temporary array into the
newly malloc'd space. */
memcpy (array, threadvars, sizeof threadvars);
__hurd_threadvar_stack_offset = (unsigned long int) array;
/* The argument data is just above the stack frame we will unwind by
returning. Mutate our own return address to run the code below. */
usercode = data[-1];
((void **) data)[-1] = &&call_init1;
/* Force USERCODE into %eax and &init1 into %ecx, which are not
restored by function return. */
asm volatile ("# a %0 c %1" : : "a" (usercode), "c" (&init1));
}
return;
switch_stacks:
/* Our return address was redirected to here, so at this point our
stack is unwound and callers' registers restored. Only %ecx and
%eax are call-clobbered and thus still have the values we set just
above. Fetch from there the new stack pointer we will run on, and
jmp to the run-time address of `init1'; when it returns, it will run
the user code with the argument data at the top of the stack. */
asm volatile ("movl %eax, %esp; jmp *%ecx");
/* NOTREACHED */
call_init1:
/* As in the stack-switching case, at this point our stack is unwound
and callers' registers restored, and only %ecx and %eax communicate
values from the lines above. In this case we have stashed in %eax
the user code return address. Push it on the top of the stack so it
acts as init1's return address, and then jump there. */
asm volatile ("pushl %eax; jmp *%ecx");
/* NOTREACHED */
}
}
void
__libc_init_first (int argc, char **argv, char **envp)
#ifdef PIC
{
/* Everything was done in the shared library initializer, _init. */
}
#else
{
posixland_init(argc, argv);
}
/* XXX This is all a crock and I am not happy with it.
This poorly-named function is called by static-start.S,
which should not exist at all. */
void
_hurd_stack_setup (int argc __attribute__ ((unused)), ...)
{
void doinit (int *data)
{
/* This function gets called with the argument data at TOS. */
/* Push the user return address after the argument data, and then
jump to `doinit1' (above), so it is as if __libc_init_first's
caller had called `doinit1' with the argument data already on the
stack. */
*--data = (&argc)[-1];
asm volatile ("movl %0, %%esp\n" /* Switch to new outermost stack. */
"movl $0, %%ebp\n" /* Clear outermost frame pointer. */
"jmp *%1" : : "r" (data), "r" (&doinit1));
/* NOTREACHED */
}
/* Initialize data structures so we can do RPCs. */
__mach_init ();
RUN_HOOK (_hurd_preinit_hook, ());
_hurd_startup ((void **) &argc, &doinit);
}
#endif
/* This function is defined here so that if this file ever gets into
ld.so we will get a link error. Having this file silently included
in ld.so causes disaster, because the _init definition above will
cause ld.so to gain an init function, which is not a cool thing. */
void
_dl_start (void)
{
abort ();
}