mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-25 14:30:06 +00:00
348 lines
8.4 KiB
ArmAsm
348 lines
8.4 KiB
ArmAsm
/* Find character CH in a NUL terminated string.
|
|
Highly optimized version for ix85, x>=5.
|
|
Copyright (C) 1995-2023 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <sysdep.h>
|
|
#include "asm-syntax.h"
|
|
|
|
/* This version is especially optimized for the i586 (and following?)
|
|
processors. This is mainly done by using the two pipelines. The
|
|
version optimized for i486 is weak in this aspect because to get
|
|
as much parallelism we have to execute some *more* instructions.
|
|
|
|
The code below is structured to reflect the pairing of the instructions
|
|
as *I think* it is. I have no processor data book to verify this.
|
|
If you find something you think is incorrect let me know. */
|
|
|
|
|
|
/* The magic value which is used throughout in the whole code. */
|
|
#define magic 0xfefefeff
|
|
|
|
#define PARMS 4+16 /* space for 4 saved regs */
|
|
#define RTN PARMS
|
|
#define STR RTN
|
|
#define CHR STR+4
|
|
|
|
.text
|
|
ENTRY (strchr)
|
|
|
|
pushl %edi /* Save callee-safe registers. */
|
|
cfi_adjust_cfa_offset (-4)
|
|
pushl %esi
|
|
cfi_adjust_cfa_offset (-4)
|
|
|
|
pushl %ebx
|
|
cfi_adjust_cfa_offset (-4)
|
|
pushl %ebp
|
|
cfi_adjust_cfa_offset (-4)
|
|
|
|
movl STR(%esp), %eax
|
|
movl CHR(%esp), %edx
|
|
|
|
movl %eax, %edi /* duplicate string pointer for later */
|
|
cfi_rel_offset (edi, 12)
|
|
xorl %ecx, %ecx /* clear %ecx */
|
|
|
|
/* At the moment %edx contains C. What we need for the
|
|
algorithm is C in all bytes of the dword. Avoid
|
|
operations on 16 bit words because these require an
|
|
prefix byte (and one more cycle). */
|
|
movb %dl, %dh /* now it is 0|0|c|c */
|
|
movb %dl, %cl /* we construct the lower half in %ecx */
|
|
|
|
shll $16, %edx /* now %edx is c|c|0|0 */
|
|
movb %cl, %ch /* now %ecx is 0|0|c|c */
|
|
|
|
orl %ecx, %edx /* and finally c|c|c|c */
|
|
andl $3, %edi /* mask alignment bits */
|
|
|
|
jz L(11) /* alignment is 0 => start loop */
|
|
|
|
movb %dl, %cl /* 0 is needed below */
|
|
jp L(0) /* exactly two bits set */
|
|
|
|
xorb (%eax), %cl /* is byte the one we are looking for? */
|
|
jz L(out) /* yes => return pointer */
|
|
|
|
xorb %dl, %cl /* load single byte and test for NUL */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
movb 1(%eax), %cl /* load single byte */
|
|
incl %eax
|
|
|
|
cmpb %cl, %dl /* is byte == C? */
|
|
je L(out) /* aligned => return pointer */
|
|
|
|
cmpb $0, %cl /* is byte NUL? */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
incl %eax
|
|
decl %edi
|
|
|
|
jne L(11)
|
|
|
|
L(0): movb (%eax), %cl /* load single byte */
|
|
|
|
cmpb %cl, %dl /* is byte == C? */
|
|
je L(out) /* aligned => return pointer */
|
|
|
|
cmpb $0, %cl /* is byte NUL? */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
cfi_rel_offset (esi, 8)
|
|
cfi_rel_offset (ebx, 4)
|
|
cfi_rel_offset (ebp, 0)
|
|
|
|
/* The following code is the preparation for the loop. The
|
|
four instruction up to `L1' will not be executed in the loop
|
|
because the same code is found at the end of the loop, but
|
|
there it is executed in parallel with other instructions. */
|
|
L(11): movl (%eax), %ecx
|
|
movl $magic, %ebp
|
|
|
|
movl $magic, %edi
|
|
addl %ecx, %ebp
|
|
|
|
/* The main loop: it looks complex and indeed it is. I would
|
|
love to say `it was hard to write, so it should he hard to
|
|
read' but I will give some more hints. To fully understand
|
|
this code you should first take a look at the i486 version.
|
|
The basic algorithm is the same, but here the code organized
|
|
in a way which permits to use both pipelines all the time.
|
|
|
|
I tried to make it a bit more understandable by indenting
|
|
the code according to stage in the algorithm. It goes as
|
|
follows:
|
|
check for 0 in 1st word
|
|
check for C in 1st word
|
|
check for 0 in 2nd word
|
|
check for C in 2nd word
|
|
check for 0 in 3rd word
|
|
check for C in 3rd word
|
|
check for 0 in 4th word
|
|
check for C in 4th word
|
|
|
|
Please note that doing the test for NUL before the test for
|
|
C allows us to overlap the test for 0 in the next word with
|
|
the test for C. */
|
|
|
|
L(1): xorl %ecx, %ebp /* (word^magic) */
|
|
addl %ecx, %edi /* add magic word */
|
|
|
|
leal 4(%eax), %eax /* increment pointer */
|
|
jnc L(4) /* previous addl caused overflow? */
|
|
|
|
movl %ecx, %ebx /* duplicate original word */
|
|
orl $magic, %ebp /* (word^magic)|magic */
|
|
|
|
addl $1, %ebp /* (word^magic)|magic == 0xffffffff? */
|
|
jne L(4) /* yes => we found word with NUL */
|
|
|
|
movl $magic, %esi /* load magic value */
|
|
xorl %edx, %ebx /* clear words which are C */
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi /* (word+magic) */
|
|
|
|
movl $magic, %edi
|
|
jnc L(5) /* previous addl caused overflow? */
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi /* (word+magic)^word */
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi /* ((word+magic)^word)|magic */
|
|
|
|
addl $1, %esi /* ((word+magic)^word)|magic==0xf..f?*/
|
|
jne L(5) /* yes => we found word with C */
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L(4)
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L(4)
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L(5)
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
jne L(5)
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L(4)
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L(4)
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L(5)
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
jne L(5)
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L(4)
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L(4)
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L(5)
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
|
|
je L(1)
|
|
|
|
/* We know there is no NUL byte but a C byte in the word.
|
|
%ebx contains NUL in this particular byte. */
|
|
L(5): subl $4, %eax /* adjust pointer */
|
|
testb %bl, %bl /* first byte == C? */
|
|
|
|
jz L(out) /* yes => return pointer */
|
|
|
|
incl %eax /* increment pointer */
|
|
testb %bh, %bh /* second byte == C? */
|
|
|
|
jz L(out) /* yes => return pointer */
|
|
|
|
shrl $16, %ebx /* make upper bytes accessible */
|
|
incl %eax /* increment pointer */
|
|
|
|
cmp $0, %bl /* third byte == C */
|
|
je L(out) /* yes => return pointer */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
L(out): popl %ebp /* restore saved registers */
|
|
cfi_adjust_cfa_offset (-4)
|
|
cfi_restore (ebp)
|
|
popl %ebx
|
|
cfi_adjust_cfa_offset (-4)
|
|
cfi_restore (ebx)
|
|
|
|
popl %esi
|
|
cfi_adjust_cfa_offset (-4)
|
|
cfi_restore (esi)
|
|
popl %edi
|
|
cfi_adjust_cfa_offset (-4)
|
|
cfi_restore (edi)
|
|
|
|
ret
|
|
|
|
cfi_adjust_cfa_offset (16)
|
|
cfi_rel_offset (edi, 12)
|
|
cfi_rel_offset (esi, 8)
|
|
cfi_rel_offset (ebx, 4)
|
|
cfi_rel_offset (ebp, 0)
|
|
/* We know there is a NUL byte in the word. But we have to test
|
|
whether there is an C byte before it in the word. */
|
|
L(4): subl $4, %eax /* adjust pointer */
|
|
cmpb %dl, %cl /* first byte == C? */
|
|
|
|
je L(out) /* yes => return pointer */
|
|
|
|
cmpb $0, %cl /* first byte == NUL? */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
cmpb %dl, %ch /* second byte == C? */
|
|
je L(out) /* yes => return pointer */
|
|
|
|
cmpb $0, %ch /* second byte == NUL? */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
shrl $16, %ecx /* make upper bytes accessible */
|
|
incl %eax /* increment pointer */
|
|
|
|
cmpb %dl, %cl /* third byte == C? */
|
|
je L(out) /* yes => return pointer */
|
|
|
|
cmpb $0, %cl /* third byte == NUL? */
|
|
je L(3) /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
/* The test four the fourth byte is necessary! */
|
|
cmpb %dl, %ch /* fourth byte == C? */
|
|
je L(out) /* yes => return pointer */
|
|
|
|
L(3): xorl %eax, %eax
|
|
jmp L(out)
|
|
END (strchr)
|
|
|
|
#undef index
|
|
weak_alias (strchr, index)
|
|
libc_hidden_builtin_def (strchr)
|