mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-19 09:20:07 +00:00
217eb19b6f
1999-10-11 Ulrich Drepper <drepper@cygnus.com> * sysdeps/powerpc/Makefile [math] (libm-support): Remove t_sqrt. * sysdeps/powerpc/e_sqrt.c: Moved to... * sysdeps/powerpc/fpu/e_sqrt.c: ...here. * sysdeps/powerpc/e_sqrtf.c: Moved to... * sysdeps/powerpc/fpu/e_sqrtf.c: ...here. * sysdeps/powerpc/submul_1.S: Adjust asm syntax. * sysdeps/powerpc/sub_n.S: Likewise. * sysdeps/powerpc/strlen.S: Likewise. * sysdeps/powerpc/strcpy.S: Likewise. * sysdeps/powerpc/strcmp.S: Likewise. * sysdeps/powerpc/strchr.S: Likewise. * sysdeps/powerpc/stpcpy.S: Likewise. * sysdeps/powerpc/setjmp.S: Likewise. * sysdeps/powerpc/rshift.S: Likewise. * sysdeps/powerpc/ppc-mcount.S: Likewise. * sysdeps/powerpc/mul_1.S: Likewise. * sysdeps/powerpc/memset.S: Likewise. * sysdeps/powerpc/lshift.S: Likewise. * sysdeps/powerpc/dl-start.S: Likewise. * sysdeps/powerpc/bzero.S: Likewise. * sysdeps/powerpc/bsd-setjmp.S: Likewise. * sysdeps/powerpc/bsd-_setjmp.S: Likewise. * sysdeps/powerpc/addmul_1.S: Likewise. * sysdeps/powerpc/add_n.S: Likewise. * sysdeps/powerpc/__longjmp.S: Likewise. * sysdeps/powerpc/elf/start.S: Likewise. 1999-10-11 Cristian Gafton <gafton@redhat.com> * sysdeps/unix/sysv/linux/alpha/bits/sigaction.h: Declare
145 lines
5.4 KiB
ArmAsm
145 lines
5.4 KiB
ArmAsm
/* Optimized strlen implementation for PowerPC.
|
|
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <sysdep.h>
|
|
|
|
/* The algorithm here uses the following techniques:
|
|
|
|
1) Given a word 'x', we can test to see if it contains any 0 bytes
|
|
by subtracting 0x01010101, and seeing if any of the high bits of each
|
|
byte changed from 0 to 1. This works because the least significant
|
|
0 byte must have had no incoming carry (otherwise it's not the least
|
|
significant), so it is 0x00 - 0x01 == 0xff. For all other
|
|
byte values, either they have the high bit set initially, or when
|
|
1 is subtracted you get a value in the range 0x00-0x7f, none of which
|
|
have their high bit set. The expression here is
|
|
(x + 0xfefefeff) & ~(x | 0x7f7f7f7f), which gives 0x00000000 when
|
|
there were no 0x00 bytes in the word.
|
|
|
|
2) Given a word 'x', we can test to see _which_ byte was zero by
|
|
calculating ~(((x & 0x7f7f7f7f) + 0x7f7f7f7f) | x | 0x7f7f7f7f).
|
|
This produces 0x80 in each byte that was zero, and 0x00 in all
|
|
the other bytes. The '| 0x7f7f7f7f' clears the low 7 bits in each
|
|
byte, and the '| x' part ensures that bytes with the high bit set
|
|
produce 0x00. The addition will carry into the high bit of each byte
|
|
iff that byte had one of its low 7 bits set. We can then just see
|
|
which was the most significant bit set and divide by 8 to find how
|
|
many to add to the index.
|
|
This is from the book 'The PowerPC Compiler Writer's Guide',
|
|
by Steve Hoxey, Faraydon Karim, Bill Hay and Hank Warren.
|
|
|
|
We deal with strings not aligned to a word boundary by taking the
|
|
first word and ensuring that bytes not part of the string
|
|
are treated as nonzero. To allow for memory latency, we unroll the
|
|
loop a few times, being careful to ensure that we do not read ahead
|
|
across cache line boundaries.
|
|
|
|
Questions to answer:
|
|
1) How long are strings passed to strlen? If they're often really long,
|
|
we should probably use cache management instructions and/or unroll the
|
|
loop more. If they're often quite short, it might be better to use
|
|
fact (2) in the inner loop than have to recalculate it.
|
|
2) How popular are bytes with the high bit set? If they are very rare,
|
|
on some processors it might be useful to use the simpler expression
|
|
~((x - 0x01010101) | 0x7f7f7f7f) (that is, on processors with only one
|
|
ALU), but this fails when any character has its high bit set. */
|
|
|
|
/* Some notes on register usage: Under the SVR4 ABI, we can use registers
|
|
0 and 3 through 12 (so long as we don't call any procedures) without
|
|
saving them. We can also use registers 14 through 31 if we save them.
|
|
We can't use r1 (it's the stack pointer), r2 nor r13 because the user
|
|
program may expect them to hold their usual value if we get sent
|
|
a signal. Integer parameters are passed in r3 through r10.
|
|
We can use condition registers cr0, cr1, cr5, cr6, and cr7 without saving
|
|
them, the others we must save. */
|
|
|
|
ENTRY(strlen)
|
|
/* On entry, r3 points to the string, and it's left that way.
|
|
We use r6 to store 0xfefefeff, and r7 to store 0x7f7f7f7f.
|
|
r4 is used to keep the current index into the string; r5 holds
|
|
the number of padding bits we prepend to the string to make it
|
|
start at a word boundary. r8 holds the 'current' word.
|
|
r9-12 are temporaries. r0 is used as a temporary and for discarded
|
|
results. */
|
|
clrrwi r4,r3,2
|
|
lis r7,0x7f7f
|
|
rlwinm r5,r3,3,27,28
|
|
lwz r8,0(r4)
|
|
li r9,-1
|
|
addi r7,r7,0x7f7f
|
|
/* That's the setup done, now do the first pair of words.
|
|
We make an exception and use method (2) on the first two words, to reduce
|
|
overhead. */
|
|
srw r9,r9,r5
|
|
and r0,r7,r8
|
|
or r10,r7,r8
|
|
add r0,r0,r7
|
|
nor r0,r10,r0
|
|
and. r8,r0,r9
|
|
mtcrf 0x01,r3
|
|
bne L(done0)
|
|
lis r6,0xfeff
|
|
addi r6,r6,-0x101
|
|
/* Are we now aligned to a doubleword boundary? */
|
|
bt 29,L(loop)
|
|
|
|
/* Handle second word of pair. */
|
|
lwzu r8,4(r4)
|
|
and r0,r7,r8
|
|
or r10,r7,r8
|
|
add r0,r0,r7
|
|
nor. r8,r10,r0
|
|
bne L(done0)
|
|
|
|
/* The loop. */
|
|
|
|
L(loop):
|
|
lwz r8,4(r4)
|
|
lwzu r9,8(r4)
|
|
add r0,r6,r8
|
|
nor r10,r7,r8
|
|
and. r0,r0,r10
|
|
add r11,r6,r9
|
|
nor r12,r7,r9
|
|
bne L(done1)
|
|
and. r0,r11,r12
|
|
beq L(loop)
|
|
|
|
and r0,r7,r9
|
|
add r0,r0,r7
|
|
andc r8,r12,r0
|
|
b L(done0)
|
|
|
|
L(done1):
|
|
and r0,r7,r8
|
|
subi r4,r4,4
|
|
add r0,r0,r7
|
|
andc r8,r10,r0
|
|
|
|
/* When we get to here, r4 points to the first word in the string that
|
|
contains a zero byte, and the most significant set bit in r8 is in that
|
|
byte. */
|
|
L(done0):
|
|
cntlzw r11,r8
|
|
subf r0,r3,r4
|
|
srwi r11,r11,3
|
|
add r3,r0,r11
|
|
blr
|
|
END(strlen)
|