mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-27 07:20:11 +00:00
234 lines
8.5 KiB
C
234 lines
8.5 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001, 2011 Free Software Foundation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
/************************************************************************/
|
|
/* MODULE_NAME: atnat.c */
|
|
/* */
|
|
/* FUNCTIONS: uatan */
|
|
/* atanMp */
|
|
/* signArctan */
|
|
/* */
|
|
/* */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */
|
|
/* mpatan.c mpatan2.c mpsqrt.c */
|
|
/* uatan.tbl */
|
|
/* */
|
|
/* An ultimate atan() routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of atan(x). */
|
|
/* */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/************************************************************************/
|
|
|
|
#include <dla.h>
|
|
#include "mpa.h"
|
|
#include "MathLib.h"
|
|
#include "uatan.tbl"
|
|
#include "atnat.h"
|
|
#include "math.h"
|
|
|
|
void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */
|
|
static double atanMp(double,const int[]);
|
|
double __signArctan(double,double);
|
|
/* An ultimate atan() routine. Given an IEEE double machine number x, */
|
|
/* routine computes the correctly rounded (to nearest) value of atan(x). */
|
|
double atan(double x) {
|
|
|
|
|
|
double cor,s1,ss1,s2,ss2,t1,t2,t3,t7,t8,t9,t10,u,u2,u3,
|
|
v,vv,w,ww,y,yy,z,zz;
|
|
#ifndef DLA_FMS
|
|
double t4,t5,t6;
|
|
#endif
|
|
#if 0
|
|
double y1,y2;
|
|
#endif
|
|
int i,ux,dx;
|
|
#if 0
|
|
int p;
|
|
#endif
|
|
static const int pr[M]={6,8,10,32};
|
|
number num;
|
|
#if 0
|
|
mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;
|
|
#endif
|
|
|
|
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
|
|
|
|
/* x=NaN */
|
|
if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))
|
|
return x+x;
|
|
|
|
/* Regular values of x, including denormals +-0 and +-INF */
|
|
u = (x<ZERO) ? -x : x;
|
|
if (u<C) {
|
|
if (u<B) {
|
|
if (u<A) { /* u < A */
|
|
return x; }
|
|
else { /* A <= u < B */
|
|
v=x*x; yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
|
if ((y=x+(yy-U1*x)) == x+(yy+U1*x)) return y;
|
|
|
|
EMULV(x,x,v,vv,t1,t2,t3,t4,t5) /* v+vv=x^2 */
|
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2)
|
|
if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1)) return y;
|
|
|
|
return atanMp(x,pr);
|
|
} }
|
|
else { /* B <= u < C */
|
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
|
z=u-cij[i][0].d;
|
|
yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
|
|
z*(cij[i][5].d+z* cij[i][6].d))));
|
|
t1=cij[i][1].d;
|
|
if (i<112) {
|
|
if (i<48) u2=U21; /* u < 1/4 */
|
|
else u2=U22; } /* 1/4 <= u < 1/2 */
|
|
else {
|
|
if (i<176) u2=U23; /* 1/2 <= u < 3/4 */
|
|
else u2=U24; } /* 3/4 <= u <= 1 */
|
|
if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1)) return __signArctan(x,y);
|
|
|
|
z=u-hij[i][0].d;
|
|
s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
|
|
z*(hij[i][14].d+z* hij[i][15].d))));
|
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
|
if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2)) return __signArctan(x,y);
|
|
|
|
return atanMp(x,pr);
|
|
}
|
|
}
|
|
else {
|
|
if (u<D) { /* C <= u < D */
|
|
w=ONE/u;
|
|
EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
|
|
ww=w*((ONE-t1)-t2);
|
|
i=(TWO52+TWO8*w)-TWO52; i-=16;
|
|
z=(w-cij[i][0].d)+ww;
|
|
yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
|
|
z*(cij[i][5].d+z* cij[i][6].d))));
|
|
t1=HPI-cij[i][1].d;
|
|
if (i<112) u3=U31; /* w < 1/2 */
|
|
else u3=U32; /* w >= 1/2 */
|
|
if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y);
|
|
|
|
DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
|
t1=w-hij[i][0].d;
|
|
EADD(t1,ww,z,zz)
|
|
s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
|
|
z*(hij[i][14].d+z* hij[i][15].d))));
|
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
|
SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)
|
|
if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y);
|
|
|
|
return atanMp(x,pr);
|
|
}
|
|
else {
|
|
if (u<E) { /* D <= u < E */
|
|
w=ONE/u; v=w*w;
|
|
EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
|
|
yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
|
ww=w*((ONE-t1)-t2);
|
|
ESUB(HPI,w,t3,cor)
|
|
yy=((HPI1+cor)-ww)-yy;
|
|
if ((y=t3+(yy-U4)) == t3+(yy+U4)) return __signArctan(x,y);
|
|
|
|
DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
|
MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
|
ADD2(w,ww,s2,ss2,s1,ss1,t1,t2)
|
|
SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2)
|
|
if ((y=s2+(ss2-U8)) == s2+(ss2+U8)) return __signArctan(x,y);
|
|
|
|
return atanMp(x,pr);
|
|
}
|
|
else {
|
|
/* u >= E */
|
|
if (x>0) return HPI;
|
|
else return MHPI; }
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Fix the sign of y and return */
|
|
double __signArctan(double x,double y){
|
|
|
|
if (x<ZERO) return -y;
|
|
else return y;
|
|
}
|
|
|
|
/* Final stages. Compute atan(x) by multiple precision arithmetic */
|
|
static double atanMp(double x,const int pr[]){
|
|
mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
|
|
double y1,y2;
|
|
int i,p;
|
|
|
|
for (i=0; i<M; i++) {
|
|
p = pr[i];
|
|
__dbl_mp(x,&mpx,p); __mpatan(&mpx,&mpy,p);
|
|
__dbl_mp(u9[i].d,&mpt1,p); __mul(&mpy,&mpt1,&mperr,p);
|
|
__add(&mpy,&mperr,&mpy1,p); __sub(&mpy,&mperr,&mpy2,p);
|
|
__mp_dbl(&mpy1,&y1,p); __mp_dbl(&mpy2,&y2,p);
|
|
if (y1==y2) return y1;
|
|
}
|
|
return y1; /*if unpossible to do exact computing */
|
|
}
|
|
|
|
#ifdef NO_LONG_DOUBLE
|
|
weak_alias (atan, atanl)
|
|
#endif
|