mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-13 06:40:09 +00:00
80 lines
3.3 KiB
C
80 lines
3.3 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001, 2011 Free Software Foundation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*************************************************************************/
|
|
/* MODULE_NAME:slowpow.c */
|
|
/* */
|
|
/* FUNCTION:slowpow */
|
|
/* */
|
|
/*FILES NEEDED:mpa.h */
|
|
/* mpa.c mpexp.c mplog.c halfulp.c */
|
|
/* */
|
|
/* Given two IEEE double machine numbers y,x , routine computes the */
|
|
/* correctly rounded (to nearest) value of x^y. Result calculated by */
|
|
/* multiplication (in halfulp.c) or if result isn't accurate enough */
|
|
/* then routine converts x and y into multi-precision doubles and */
|
|
/* calls to mpexp routine */
|
|
/*************************************************************************/
|
|
|
|
#include "mpa.h"
|
|
#include "math_private.h"
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
void __mpexp(mp_no *x, mp_no *y, int p);
|
|
void __mplog(mp_no *x, mp_no *y, int p);
|
|
double ulog(double);
|
|
double __halfulp(double x,double y);
|
|
|
|
double
|
|
SECTION
|
|
__slowpow(double x, double y, double z) {
|
|
double res,res1;
|
|
mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
|
|
static const mp_no eps = {-3,{1.0,4.0}};
|
|
int p;
|
|
|
|
res = __halfulp(x,y); /* halfulp() returns -10 or x^y */
|
|
if (res >= 0) return res; /* if result was really computed by halfulp */
|
|
/* else, if result was not really computed by halfulp */
|
|
p = 10; /* p=precision */
|
|
__dbl_mp(x,&mpx,p);
|
|
__dbl_mp(y,&mpy,p);
|
|
__dbl_mp(z,&mpz,p);
|
|
__mplog(&mpx, &mpz, p); /* log(x) = z */
|
|
__mul(&mpy,&mpz,&mpw,p); /* y * z =w */
|
|
__mpexp(&mpw, &mpp, p); /* e^w =pp */
|
|
__add(&mpp,&eps,&mpr,p); /* pp+eps =r */
|
|
__mp_dbl(&mpr, &res, p);
|
|
__sub(&mpp,&eps,&mpr1,p); /* pp -eps =r1 */
|
|
__mp_dbl(&mpr1, &res1, p); /* converting into double precision */
|
|
if (res == res1) return res;
|
|
|
|
p = 32; /* if we get here result wasn't calculated exactly, continue */
|
|
__dbl_mp(x,&mpx,p); /* for more exact calculation */
|
|
__dbl_mp(y,&mpy,p);
|
|
__dbl_mp(z,&mpz,p);
|
|
__mplog(&mpx, &mpz, p); /* log(c)=z */
|
|
__mul(&mpy,&mpz,&mpw,p); /* y*z =w */
|
|
__mpexp(&mpw, &mpp, p); /* e^w=pp */
|
|
__mp_dbl(&mpp, &res, p); /* converting into double precision */
|
|
return res;
|
|
}
|