glibc/sysdeps/ieee754/ldbl-128/e_acosl.c
Paul Eggert 5a82c74822 Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:

sed -ri '
  s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
  s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
  $(find $(git ls-files) -prune -type f \
      ! -name '*.po' \
      ! -name 'ChangeLog*' \
      ! -path COPYING ! -path COPYING.LIB \
      ! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
      ! -path manual/texinfo.tex ! -path scripts/config.guess \
      ! -path scripts/config.sub ! -path scripts/install-sh \
      ! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
      ! -path INSTALL ! -path  locale/programs/charmap-kw.h \
      ! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
      ! '(' -name configure \
            -execdir test -f configure.ac -o -f configure.in ';' ')' \
      ! '(' -name preconfigure \
            -execdir test -f preconfigure.ac ';' ')' \
      -print)

and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:

  chmod a+x sysdeps/unix/sysv/linux/riscv/configure
  # Omit irrelevant whitespace and comment-only changes,
  # perhaps from a slightly-different Autoconf version.
  git checkout -f \
    sysdeps/csky/configure \
    sysdeps/hppa/configure \
    sysdeps/riscv/configure \
    sysdeps/unix/sysv/linux/csky/configure
  # Omit changes that caused a pre-commit check to fail like this:
  # remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
  git checkout -f \
    sysdeps/powerpc/powerpc64/ppc-mcount.S \
    sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
  # Omit change that caused a pre-commit check to fail like this:
  # remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
  git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 02:43:31 -07:00

320 lines
9.8 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<https://www.gnu.org/licenses/>. */
/* __ieee754_acosl(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x| <= 0.375
* acos(x) = pi/2 - asin(x)
* Between .375 and .5 the approximation is
* acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
* Between .5 and .625 the approximation is
* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
* For x > 0.625,
* acos(x) = 2 asin(sqrt((1-x)/2))
* computed with an extended precision square root in the leading term.
* For x < -0.625
* acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Functions needed: sqrtl.
*/
#include <math.h>
#include <math_private.h>
static const _Float128
one = 1,
pio2_hi = L(1.5707963267948966192313216916397514420986),
pio2_lo = L(4.3359050650618905123985220130216759843812E-35),
/* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
rS0 = L(5.619049346208901520945464704848780243887E0),
rS1 = L(-4.460504162777731472539175700169871920352E1),
rS2 = L(1.317669505315409261479577040530751477488E2),
rS3 = L(-1.626532582423661989632442410808596009227E2),
rS4 = L(3.144806644195158614904369445440583873264E1),
rS5 = L(9.806674443470740708765165604769099559553E1),
rS6 = L(-5.708468492052010816555762842394927806920E1),
rS7 = L(-1.396540499232262112248553357962639431922E1),
rS8 = L(1.126243289311910363001762058295832610344E1),
rS9 = L(4.956179821329901954211277873774472383512E-1),
rS10 = L(-3.313227657082367169241333738391762525780E-1),
sS0 = L(-4.645814742084009935700221277307007679325E0),
sS1 = L(3.879074822457694323970438316317961918430E1),
sS2 = L(-1.221986588013474694623973554726201001066E2),
sS3 = L(1.658821150347718105012079876756201905822E2),
sS4 = L(-4.804379630977558197953176474426239748977E1),
sS5 = L(-1.004296417397316948114344573811562952793E2),
sS6 = L(7.530281592861320234941101403870010111138E1),
sS7 = L(1.270735595411673647119592092304357226607E1),
sS8 = L(-1.815144839646376500705105967064792930282E1),
sS9 = L(-7.821597334910963922204235247786840828217E-2),
/* 1.000000000000000000000000000000000000000E0 */
acosr5625 = L(9.7338991014954640492751132535550279812151E-1),
pimacosr5625 = L(2.1682027434402468335351320579240000860757E0),
/* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 2.1e-35 */
P0 = L(2.177690192235413635229046633751390484892E0),
P1 = L(-2.848698225706605746657192566166142909573E1),
P2 = L(1.040076477655245590871244795403659880304E2),
P3 = L(-1.400087608918906358323551402881238180553E2),
P4 = L(2.221047917671449176051896400503615543757E1),
P5 = L(9.643714856395587663736110523917499638702E1),
P6 = L(-5.158406639829833829027457284942389079196E1),
P7 = L(-1.578651828337585944715290382181219741813E1),
P8 = L(1.093632715903802870546857764647931045906E1),
P9 = L(5.448925479898460003048760932274085300103E-1),
P10 = L(-3.315886001095605268470690485170092986337E-1),
Q0 = L(-1.958219113487162405143608843774587557016E0),
Q1 = L(2.614577866876185080678907676023269360520E1),
Q2 = L(-9.990858606464150981009763389881793660938E1),
Q3 = L(1.443958741356995763628660823395334281596E2),
Q4 = L(-3.206441012484232867657763518369723873129E1),
Q5 = L(-1.048560885341833443564920145642588991492E2),
Q6 = L(6.745883931909770880159915641984874746358E1),
Q7 = L(1.806809656342804436118449982647641392951E1),
Q8 = L(-1.770150690652438294290020775359580915464E1),
Q9 = L(-5.659156469628629327045433069052560211164E-1),
/* 1.000000000000000000000000000000000000000E0 */
acosr4375 = L(1.1179797320499710475919903296900511518755E0),
pimacosr4375 = L(2.0236129215398221908706530535894517323217E0),
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
pS0 = L(-8.358099012470680544198472400254596543711E2),
pS1 = L(3.674973957689619490312782828051860366493E3),
pS2 = L(-6.730729094812979665807581609853656623219E3),
pS3 = L(6.643843795209060298375552684423454077633E3),
pS4 = L(-3.817341990928606692235481812252049415993E3),
pS5 = L(1.284635388402653715636722822195716476156E3),
pS6 = L(-2.410736125231549204856567737329112037867E2),
pS7 = L(2.219191969382402856557594215833622156220E1),
pS8 = L(-7.249056260830627156600112195061001036533E-1),
pS9 = L(1.055923570937755300061509030361395604448E-3),
qS0 = L(-5.014859407482408326519083440151745519205E3),
qS1 = L(2.430653047950480068881028451580393430537E4),
qS2 = L(-4.997904737193653607449250593976069726962E4),
qS3 = L(5.675712336110456923807959930107347511086E4),
qS4 = L(-3.881523118339661268482937768522572588022E4),
qS5 = L(1.634202194895541569749717032234510811216E4),
qS6 = L(-4.151452662440709301601820849901296953752E3),
qS7 = L(5.956050864057192019085175976175695342168E2),
qS8 = L(-4.175375777334867025769346564600396877176E1);
/* 1.000000000000000000000000000000000000000E0 */
_Float128
__ieee754_acosl (_Float128 x)
{
_Float128 z, r, w, p, q, s, t, f2;
int32_t ix, sign;
ieee854_long_double_shape_type u;
u.value = x;
sign = u.parts32.w0;
ix = sign & 0x7fffffff;
u.parts32.w0 = ix; /* |x| */
if (ix >= 0x3fff0000) /* |x| >= 1 */
{
if (ix == 0x3fff0000
&& (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
{ /* |x| == 1 */
if ((sign & 0x80000000) == 0)
return 0.0; /* acos(1) = 0 */
else
return (2.0 * pio2_hi) + (2.0 * pio2_lo); /* acos(-1)= pi */
}
return (x - x) / (x - x); /* acos(|x| > 1) is NaN */
}
else if (ix < 0x3ffe0000) /* |x| < 0.5 */
{
if (ix < 0x3f8e0000) /* |x| < 2**-113 */
return pio2_hi + pio2_lo;
if (ix < 0x3ffde000) /* |x| < .4375 */
{
/* Arcsine of x. */
z = x * x;
p = (((((((((pS9 * z
+ pS8) * z
+ pS7) * z
+ pS6) * z
+ pS5) * z
+ pS4) * z
+ pS3) * z
+ pS2) * z
+ pS1) * z
+ pS0) * z;
q = (((((((( z
+ qS8) * z
+ qS7) * z
+ qS6) * z
+ qS5) * z
+ qS4) * z
+ qS3) * z
+ qS2) * z
+ qS1) * z
+ qS0;
r = x + x * p / q;
z = pio2_hi - (r - pio2_lo);
return z;
}
/* .4375 <= |x| < .5 */
t = u.value - L(0.4375);
p = ((((((((((P10 * t
+ P9) * t
+ P8) * t
+ P7) * t
+ P6) * t
+ P5) * t
+ P4) * t
+ P3) * t
+ P2) * t
+ P1) * t
+ P0) * t;
q = (((((((((t
+ Q9) * t
+ Q8) * t
+ Q7) * t
+ Q6) * t
+ Q5) * t
+ Q4) * t
+ Q3) * t
+ Q2) * t
+ Q1) * t
+ Q0;
r = p / q;
if (sign & 0x80000000)
r = pimacosr4375 - r;
else
r = acosr4375 + r;
return r;
}
else if (ix < 0x3ffe4000) /* |x| < 0.625 */
{
t = u.value - L(0.5625);
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t
+ rS7) * t
+ rS6) * t
+ rS5) * t
+ rS4) * t
+ rS3) * t
+ rS2) * t
+ rS1) * t
+ rS0) * t;
q = (((((((((t
+ sS9) * t
+ sS8) * t
+ sS7) * t
+ sS6) * t
+ sS5) * t
+ sS4) * t
+ sS3) * t
+ sS2) * t
+ sS1) * t
+ sS0;
if (sign & 0x80000000)
r = pimacosr5625 - p / q;
else
r = acosr5625 + p / q;
return r;
}
else
{ /* |x| >= .625 */
z = (one - u.value) * 0.5;
s = sqrtl (z);
/* Compute an extended precision square root from
the Newton iteration s -> 0.5 * (s + z / s).
The change w from s to the improved value is
w = 0.5 * (s + z / s) - s = (s^2 + z)/2s - s = (z - s^2)/2s.
Express s = f1 + f2 where f1 * f1 is exactly representable.
w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
s + w has extended precision. */
u.value = s;
u.parts32.w2 = 0;
u.parts32.w3 = 0;
f2 = s - u.value;
w = z - u.value * u.value;
w = w - 2.0 * u.value * f2;
w = w - f2 * f2;
w = w / (2.0 * s);
/* Arcsine of s. */
p = (((((((((pS9 * z
+ pS8) * z
+ pS7) * z
+ pS6) * z
+ pS5) * z
+ pS4) * z
+ pS3) * z
+ pS2) * z
+ pS1) * z
+ pS0) * z;
q = (((((((( z
+ qS8) * z
+ qS7) * z
+ qS6) * z
+ qS5) * z
+ qS4) * z
+ qS3) * z
+ qS2) * z
+ qS1) * z
+ qS0;
r = s + (w + s * p / q);
if (sign & 0x80000000)
w = pio2_hi + (pio2_lo - r);
else
w = r;
return 2.0 * w;
}
}
strong_alias (__ieee754_acosl, __acosl_finite)