mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-29 08:11:08 +00:00
75207bde68
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
129 lines
4.7 KiB
C
129 lines
4.7 KiB
C
/* Double-precision vector (SVE) cbrt function
|
|
|
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "sv_math.h"
|
|
#include "poly_sve_f64.h"
|
|
|
|
const static struct data
|
|
{
|
|
float64_t poly[4];
|
|
float64_t table[5];
|
|
float64_t one_third, two_thirds, shift;
|
|
int64_t exp_bias;
|
|
uint64_t tiny_bound, thresh;
|
|
} data = {
|
|
/* Generated with FPMinimax in [0.5, 1]. */
|
|
.poly = { 0x1.c14e8ee44767p-2, 0x1.dd2d3f99e4c0ep-1, -0x1.08e83026b7e74p-1,
|
|
0x1.2c74eaa3ba428p-3, },
|
|
/* table[i] = 2^((i - 2) / 3). */
|
|
.table = { 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0,
|
|
0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0, },
|
|
.one_third = 0x1.5555555555555p-2,
|
|
.two_thirds = 0x1.5555555555555p-1,
|
|
.shift = 0x1.8p52,
|
|
.exp_bias = 1022,
|
|
.tiny_bound = 0x0010000000000000, /* Smallest normal. */
|
|
.thresh = 0x7fe0000000000000, /* asuint64 (infinity) - tiny_bound. */
|
|
};
|
|
|
|
#define MantissaMask 0x000fffffffffffff
|
|
#define HalfExp 0x3fe0000000000000
|
|
|
|
static svfloat64_t NOINLINE
|
|
special_case (svfloat64_t x, svfloat64_t y, svbool_t special)
|
|
{
|
|
return sv_call_f64 (cbrt, x, y, special);
|
|
}
|
|
|
|
static inline svfloat64_t
|
|
shifted_lookup (const svbool_t pg, const float64_t *table, svint64_t i)
|
|
{
|
|
return svld1_gather_index (pg, table, svadd_x (pg, i, 2));
|
|
}
|
|
|
|
/* Approximation for double-precision vector cbrt(x), using low-order
|
|
polynomial and two Newton iterations. Greatest observed error is 1.79 ULP.
|
|
Errors repeat according to the exponent, for instance an error observed for
|
|
double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i
|
|
is an integer.
|
|
_ZGVsMxv_cbrt (0x0.3fffb8d4413f3p-1022) got 0x1.965f53b0e5d97p-342
|
|
want 0x1.965f53b0e5d95p-342. */
|
|
svfloat64_t SV_NAME_D1 (cbrt) (svfloat64_t x, const svbool_t pg)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
|
|
svfloat64_t ax = svabs_x (pg, x);
|
|
svuint64_t iax = svreinterpret_u64 (ax);
|
|
svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), iax);
|
|
|
|
/* Subnormal, +/-0 and special values. */
|
|
svbool_t special = svcmpge (pg, svsub_x (pg, iax, d->tiny_bound), d->thresh);
|
|
|
|
/* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector
|
|
version of frexp, which gets subnormal values wrong - these have to be
|
|
special-cased as a result. */
|
|
svfloat64_t m = svreinterpret_f64 (svorr_x (
|
|
pg, svand_x (pg, svreinterpret_u64 (x), MantissaMask), HalfExp));
|
|
svint64_t e
|
|
= svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, iax, 52)), d->exp_bias);
|
|
|
|
/* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point
|
|
for Newton iterations. */
|
|
svfloat64_t p
|
|
= sv_pairwise_poly_3_f64_x (pg, m, svmul_x (pg, m, m), d->poly);
|
|
|
|
/* Two iterations of Newton's method for iteratively approximating cbrt. */
|
|
svfloat64_t m_by_3 = svmul_x (pg, m, d->one_third);
|
|
svfloat64_t a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, p, p)), p,
|
|
d->two_thirds);
|
|
a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, a, a)), a, d->two_thirds);
|
|
|
|
/* Assemble the result by the following:
|
|
|
|
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
|
|
|
|
We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is
|
|
not necessarily a multiple of 3 we lose some information.
|
|
|
|
Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q.
|
|
|
|
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which
|
|
is an integer in [-2, 2], and can be looked up in the table T. Hence the
|
|
result is assembled as:
|
|
|
|
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */
|
|
svfloat64_t eb3f = svmul_x (pg, svcvt_f64_x (pg, e), d->one_third);
|
|
svint64_t ey = svcvt_s64_x (pg, eb3f);
|
|
svint64_t em3 = svmls_x (pg, e, ey, 3);
|
|
|
|
svfloat64_t my = shifted_lookup (pg, d->table, em3);
|
|
my = svmul_x (pg, my, a);
|
|
|
|
/* Vector version of ldexp. */
|
|
svfloat64_t y = svscale_x (pg, my, ey);
|
|
|
|
if (__glibc_unlikely (svptest_any (pg, special)))
|
|
return special_case (
|
|
x, svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)),
|
|
special);
|
|
|
|
/* Copy sign. */
|
|
return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign));
|
|
}
|