mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-29 08:11:08 +00:00
90a6ca8b28
Previously many routines used * to load from vector types stored in the data table. This is emitted as ldr, which byte-swaps the entire vector register, and causes bugs for big-endian when not all lanes contain the same value. When a vector is to be used this way, it has been replaced with an array and the load with an explicit ld1 intrinsic, which byte-swaps only within lanes. As well, many routines previously used non-standard GCC syntax for vector operations such as indexing into vectors types with [] and assembling vectors using {}. This syntax should not be mixed with ACLE, as the former does not respect endianness whereas the latter does. Such examples have been replaced with, for instance, vcombine_* and vgetq_lane* intrinsics. Helpers which only use the GCC syntax, such as the v_call helpers, do not need changing as they do not use intrinsics. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
207 lines
7.7 KiB
C
207 lines
7.7 KiB
C
/* Double-precision vector (Advanced SIMD) erfc function
|
|
|
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
#include "vecmath_config.h"
|
|
|
|
static const struct data
|
|
{
|
|
uint64x2_t offset, table_scale;
|
|
float64x2_t max, shift;
|
|
float64x2_t p20, p40, p41, p42;
|
|
float64x2_t p51, p52;
|
|
double qr5[2], qr6[2], qr7[2], qr8[2], qr9[2];
|
|
#if WANT_SIMD_EXCEPT
|
|
float64x2_t uflow_bound;
|
|
#endif
|
|
} data = {
|
|
/* Set an offset so the range of the index used for lookup is 3487, and it
|
|
can be clamped using a saturated add on an offset index.
|
|
Index offset is 0xffffffffffffffff - asuint64(shift) - 3487. */
|
|
.offset = V2 (0xbd3ffffffffff260),
|
|
.table_scale = V2 (0x37f0000000000000 << 1), /* asuint64 (2^-128) << 1. */
|
|
.max = V2 (0x1.b3ep+4), /* 3487/128. */
|
|
.shift = V2 (0x1p45),
|
|
.p20 = V2 (0x1.5555555555555p-2), /* 1/3, used to compute 2/3 and 1/6. */
|
|
.p40 = V2 (-0x1.999999999999ap-4), /* 1/10. */
|
|
.p41 = V2 (-0x1.999999999999ap-2), /* 2/5. */
|
|
.p42 = V2 (0x1.1111111111111p-3), /* 2/15. */
|
|
.p51 = V2 (-0x1.c71c71c71c71cp-3), /* 2/9. */
|
|
.p52 = V2 (0x1.6c16c16c16c17p-5), /* 2/45. */
|
|
/* Qi = (i+1) / i, Ri = -2 * i / ((i+1)*(i+2)), for i = 5, ..., 9. */
|
|
.qr5 = { 0x1.3333333333333p0, -0x1.e79e79e79e79ep-3 },
|
|
.qr6 = { 0x1.2aaaaaaaaaaabp0, -0x1.b6db6db6db6dbp-3 },
|
|
.qr7 = { 0x1.2492492492492p0, -0x1.8e38e38e38e39p-3 },
|
|
.qr8 = { 0x1.2p0, -0x1.6c16c16c16c17p-3 },
|
|
.qr9 = { 0x1.1c71c71c71c72p0, -0x1.4f2094f2094f2p-3 },
|
|
#if WANT_SIMD_EXCEPT
|
|
.uflow_bound = V2 (0x1.a8b12fc6e4892p+4),
|
|
#endif
|
|
};
|
|
|
|
#define TinyBound 0x4000000000000000 /* 0x1p-511 << 1. */
|
|
#define Off 0xfffffffffffff260 /* 0xffffffffffffffff - 3487. */
|
|
|
|
struct entry
|
|
{
|
|
float64x2_t erfc;
|
|
float64x2_t scale;
|
|
};
|
|
|
|
static inline struct entry
|
|
lookup (uint64x2_t i)
|
|
{
|
|
struct entry e;
|
|
float64x2_t e1
|
|
= vld1q_f64 (&__erfc_data.tab[vgetq_lane_u64 (i, 0) - Off].erfc);
|
|
float64x2_t e2
|
|
= vld1q_f64 (&__erfc_data.tab[vgetq_lane_u64 (i, 1) - Off].erfc);
|
|
e.erfc = vuzp1q_f64 (e1, e2);
|
|
e.scale = vuzp2q_f64 (e1, e2);
|
|
return e;
|
|
}
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
static float64x2_t VPCS_ATTR NOINLINE
|
|
special_case (float64x2_t x, float64x2_t y, uint64x2_t cmp)
|
|
{
|
|
return v_call_f64 (erfc, x, y, cmp);
|
|
}
|
|
#endif
|
|
|
|
/* Optimized double-precision vector erfc(x).
|
|
Approximation based on series expansion near x rounded to
|
|
nearest multiple of 1/128.
|
|
|
|
Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,
|
|
|
|
erfc(x) ~ erfc(r) - scale * d * poly(r, d), with
|
|
|
|
poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3
|
|
+ (2/15 r^4 - 2/5 r^2 + 1/10) d^4
|
|
- r * (2/45 r^4 - 2/9 r^2 + 1/6) d^5
|
|
+ p6(r) d^6 + ... + p10(r) d^10
|
|
|
|
Polynomials p6(r) to p10(r) are computed using recurrence relation
|
|
|
|
2(i+1)p_i + 2r(i+2)p_{i+1} + (i+2)(i+3)p_{i+2} = 0,
|
|
with p0 = 1, and p1(r) = -r.
|
|
|
|
Values of erfc(r) and scale are read from lookup tables. Stored values
|
|
are scaled to avoid hitting the subnormal range.
|
|
|
|
Note that for x < 0, erfc(x) = 2.0 - erfc(-x).
|
|
|
|
Maximum measured error: 1.71 ULP
|
|
V_NAME_D1 (erfc)(0x1.46cfe976733p+4) got 0x1.e15fcbea3e7afp-608
|
|
want 0x1.e15fcbea3e7adp-608. */
|
|
VPCS_ATTR
|
|
float64x2_t V_NAME_D1 (erfc) (float64x2_t x)
|
|
{
|
|
const struct data *dat = ptr_barrier (&data);
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
/* |x| < 2^-511. Avoid fabs by left-shifting by 1. */
|
|
uint64x2_t ix = vreinterpretq_u64_f64 (x);
|
|
uint64x2_t cmp = vcltq_u64 (vaddq_u64 (ix, ix), v_u64 (TinyBound));
|
|
/* x >= ~26.54 (into subnormal case and uflow case). Comparison is done in
|
|
integer domain to avoid raising exceptions in presence of nans. */
|
|
uint64x2_t uflow = vcgeq_s64 (vreinterpretq_s64_f64 (x),
|
|
vreinterpretq_s64_f64 (dat->uflow_bound));
|
|
cmp = vorrq_u64 (cmp, uflow);
|
|
float64x2_t xm = x;
|
|
/* If any lanes are special, mask them with 0 and retain a copy of x to allow
|
|
special case handler to fix special lanes later. This is only necessary if
|
|
fenv exceptions are to be triggered correctly. */
|
|
if (__glibc_unlikely (v_any_u64 (cmp)))
|
|
x = v_zerofy_f64 (x, cmp);
|
|
#endif
|
|
|
|
float64x2_t a = vabsq_f64 (x);
|
|
a = vminq_f64 (a, dat->max);
|
|
|
|
/* Lookup erfc(r) and scale(r) in tables, e.g. set erfc(r) to 0 and scale to
|
|
2/sqrt(pi), when x reduced to r = 0. */
|
|
float64x2_t shift = dat->shift;
|
|
float64x2_t z = vaddq_f64 (a, shift);
|
|
|
|
/* Clamp index to a range of 3487. A naive approach would use a subtract and
|
|
min. Instead we offset the table address and the index, then use a
|
|
saturating add. */
|
|
uint64x2_t i = vqaddq_u64 (vreinterpretq_u64_f64 (z), dat->offset);
|
|
|
|
struct entry e = lookup (i);
|
|
|
|
/* erfc(x) ~ erfc(r) - scale * d * poly(r, d). */
|
|
float64x2_t r = vsubq_f64 (z, shift);
|
|
float64x2_t d = vsubq_f64 (a, r);
|
|
float64x2_t d2 = vmulq_f64 (d, d);
|
|
float64x2_t r2 = vmulq_f64 (r, r);
|
|
|
|
float64x2_t p1 = r;
|
|
float64x2_t p2 = vfmsq_f64 (dat->p20, r2, vaddq_f64 (dat->p20, dat->p20));
|
|
float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->p20));
|
|
float64x2_t p4 = vfmaq_f64 (dat->p41, r2, dat->p42);
|
|
p4 = vfmsq_f64 (dat->p40, r2, p4);
|
|
float64x2_t p5 = vfmaq_f64 (dat->p51, r2, dat->p52);
|
|
p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->p20), r2, p5));
|
|
/* Compute p_i using recurrence relation:
|
|
p_{i+2} = (p_i + r * Q_{i+1} * p_{i+1}) * R_{i+1}. */
|
|
float64x2_t qr5 = vld1q_f64 (dat->qr5), qr6 = vld1q_f64 (dat->qr6),
|
|
qr7 = vld1q_f64 (dat->qr7), qr8 = vld1q_f64 (dat->qr8),
|
|
qr9 = vld1q_f64 (dat->qr9);
|
|
float64x2_t p6 = vfmaq_f64 (p4, p5, vmulq_laneq_f64 (r, qr5, 0));
|
|
p6 = vmulq_laneq_f64 (p6, qr5, 1);
|
|
float64x2_t p7 = vfmaq_f64 (p5, p6, vmulq_laneq_f64 (r, qr6, 0));
|
|
p7 = vmulq_laneq_f64 (p7, qr6, 1);
|
|
float64x2_t p8 = vfmaq_f64 (p6, p7, vmulq_laneq_f64 (r, qr7, 0));
|
|
p8 = vmulq_laneq_f64 (p8, qr7, 1);
|
|
float64x2_t p9 = vfmaq_f64 (p7, p8, vmulq_laneq_f64 (r, qr8, 0));
|
|
p9 = vmulq_laneq_f64 (p9, qr8, 1);
|
|
float64x2_t p10 = vfmaq_f64 (p8, p9, vmulq_laneq_f64 (r, qr9, 0));
|
|
p10 = vmulq_laneq_f64 (p10, qr9, 1);
|
|
/* Compute polynomial in d using pairwise Horner scheme. */
|
|
float64x2_t p90 = vfmaq_f64 (p9, d, p10);
|
|
float64x2_t p78 = vfmaq_f64 (p7, d, p8);
|
|
float64x2_t p56 = vfmaq_f64 (p5, d, p6);
|
|
float64x2_t p34 = vfmaq_f64 (p3, d, p4);
|
|
float64x2_t p12 = vfmaq_f64 (p1, d, p2);
|
|
float64x2_t y = vfmaq_f64 (p78, d2, p90);
|
|
y = vfmaq_f64 (p56, d2, y);
|
|
y = vfmaq_f64 (p34, d2, y);
|
|
y = vfmaq_f64 (p12, d2, y);
|
|
|
|
y = vfmsq_f64 (e.erfc, e.scale, vfmsq_f64 (d, d2, y));
|
|
|
|
/* Offset equals 2.0 if sign, else 0.0. */
|
|
uint64x2_t sign = vshrq_n_u64 (vreinterpretq_u64_f64 (x), 63);
|
|
float64x2_t off = vreinterpretq_f64_u64 (vshlq_n_u64 (sign, 62));
|
|
/* Copy sign and scale back in a single fma. Since the bit patterns do not
|
|
overlap, then logical or and addition are equivalent here. */
|
|
float64x2_t fac = vreinterpretq_f64_u64 (
|
|
vsraq_n_u64 (vshlq_n_u64 (sign, 63), dat->table_scale, 1));
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
if (__glibc_unlikely (v_any_u64 (cmp)))
|
|
return special_case (xm, vfmaq_f64 (off, fac, y), cmp);
|
|
#endif
|
|
|
|
return vfmaq_f64 (off, fac, y);
|
|
}
|