mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-30 16:50:07 +00:00
106 lines
2.8 KiB
ArmAsm
106 lines
2.8 KiB
ArmAsm
/* ix87 specific implementation of arcsinh.
|
|
Copyright (C) 1996 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <machine/asm.h>
|
|
|
|
#ifdef __ELF__
|
|
.section .rodata
|
|
#else
|
|
.text
|
|
#endif
|
|
|
|
.align ALIGNARG(4)
|
|
ASM_TYPE_DIRECTIVE(one,@object)
|
|
one: .double 1.0
|
|
ASM_SIZE_DIRECTIVE(one)
|
|
ASM_TYPE_DIRECTIVE(limit,@object)
|
|
limit: .double 0.29
|
|
ASM_SIZE_DIRECTIVE(limit)
|
|
|
|
#ifdef PIC
|
|
#define MO(op) op##@GOTOFF(%edx)
|
|
#else
|
|
#define MO(op) op
|
|
#endif
|
|
|
|
.text
|
|
ENTRY(__ieee754_acosh)
|
|
movl 8(%esp), %ecx
|
|
cmpl $0x3ff00000, %ecx
|
|
jl 5f // < 1 => invalid
|
|
fldln2 // log(2)
|
|
fldl 4(%esp) // x : log(2)
|
|
cmpl $0x41b00000, %ecx
|
|
ja 3f // x > 2^28
|
|
#ifdef PIC
|
|
call 1f
|
|
1: popl %edx
|
|
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %edx
|
|
#endif
|
|
cmpl $0x40000000, %ecx
|
|
ja 4f // x > 2
|
|
|
|
// 1 <= x <= 2 => y = log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
|
|
fsubl MO(one) // x-1 : log(2)
|
|
fld %st // x-1 : x-1 : log(2)
|
|
fmul %st(1) // (x-1)^2 : x-1 : log(2)
|
|
fadd %st(1) // x-1+(x-1)^2 : x-1 : log(2)
|
|
fadd %st(1) // 2*(x-1)+(x-1)^2 : x-1 : log(2)
|
|
fsqrt // sqrt(2*(x-1)+(x-1)^2) : x-1 : log(2)
|
|
faddp // x-1+sqrt(2*(x-1)+(x-1)^2) : log(2)
|
|
fcoml MO(limit)
|
|
fnstsw
|
|
sahf
|
|
ja 2f
|
|
fyl2xp1 // log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
|
|
ret
|
|
|
|
2: faddl MO(one) // x+sqrt(2*(x-1)+(x-1)^2) : log(2)
|
|
fyl2x // log(x+sqrt(2*(x-1)+(x-1)^2))
|
|
ret
|
|
|
|
// x > 2^28 => y = log(x) + log(2)
|
|
.align ALIGNARG(4)
|
|
3: fyl2x // log(x)
|
|
fldln2 // log(2) : log(x)
|
|
faddp // log(x)+log(2)
|
|
ret
|
|
|
|
// 2^28 > x > 2 => y = log(2*x - 1/(x+sqrt(x*x-1)))
|
|
.align ALIGNARG(4)
|
|
4: fld %st // x : x : log(2)
|
|
fadd %st, %st(1) // x : 2*x : log(2)
|
|
fld %st // x : x : 2*x : log(2)
|
|
fmul %st(1) // x^2 : x : 2*x : log(2)
|
|
fsubl MO(one) // x^2-1 : x : 2*x : log(2)
|
|
fsqrt // sqrt(x^2-1) : x : 2*x : log(2)
|
|
faddp // x+sqrt(x^2-1) : 2*x : log(2)
|
|
fdivrl MO(one) // 1/(x+sqrt(x^2-1)) : 2*x : log(2)
|
|
fsubrp // 2*x+1/(x+sqrt(x^2)-1) : log(2)
|
|
fyl2x // log(2*x+1/(x+sqrt(x^2-1)))
|
|
ret
|
|
|
|
// x < 1 => NaN
|
|
.align ALIGNARG(4)
|
|
5: fldz
|
|
fdiv %st, %st(0)
|
|
ret
|
|
END(__ieee754_acosh)
|