mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
117 lines
4.1 KiB
C
117 lines
4.1 KiB
C
/* Single-precision AdvSIMD atan2
|
|
|
|
Copyright (C) 2023 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
#include "poly_advsimd_f32.h"
|
|
|
|
static const struct data
|
|
{
|
|
float32x4_t poly[8];
|
|
float32x4_t pi_over_2;
|
|
} data = {
|
|
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
|
[2**-128, 1.0].
|
|
Generated using fpminimax between FLT_MIN and 1. */
|
|
.poly = { V4 (-0x1.55555p-2f), V4 (0x1.99935ep-3f), V4 (-0x1.24051ep-3f),
|
|
V4 (0x1.bd7368p-4f), V4 (-0x1.491f0ep-4f), V4 (0x1.93a2c0p-5f),
|
|
V4 (-0x1.4c3c60p-6f), V4 (0x1.01fd88p-8f) },
|
|
.pi_over_2 = V4 (0x1.921fb6p+0f),
|
|
};
|
|
|
|
#define SignMask v_u32 (0x80000000)
|
|
|
|
/* Special cases i.e. 0, infinity and nan (fall back to scalar calls). */
|
|
static float32x4_t VPCS_ATTR NOINLINE
|
|
special_case (float32x4_t y, float32x4_t x, float32x4_t ret, uint32x4_t cmp)
|
|
{
|
|
return v_call2_f32 (atan2f, y, x, ret, cmp);
|
|
}
|
|
|
|
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
|
|
static inline uint32x4_t
|
|
zeroinfnan (uint32x4_t i)
|
|
{
|
|
/* 2 * i - 1 >= 2 * 0x7f800000lu - 1. */
|
|
return vcgeq_u32 (vsubq_u32 (vmulq_n_u32 (i, 2), v_u32 (1)),
|
|
v_u32 (2 * 0x7f800000lu - 1));
|
|
}
|
|
|
|
/* Fast implementation of vector atan2f. Maximum observed error is
|
|
2.95 ULP in [0x1.9300d6p+6 0x1.93c0c6p+6] x [0x1.8c2dbp+6 0x1.8cea6p+6]:
|
|
_ZGVnN4vv_atan2f (0x1.93836cp+6, 0x1.8cae1p+6) got 0x1.967f06p-1
|
|
want 0x1.967f00p-1. */
|
|
float32x4_t VPCS_ATTR V_NAME_F2 (atan2) (float32x4_t y, float32x4_t x)
|
|
{
|
|
const struct data *data_ptr = ptr_barrier (&data);
|
|
|
|
uint32x4_t ix = vreinterpretq_u32_f32 (x);
|
|
uint32x4_t iy = vreinterpretq_u32_f32 (y);
|
|
|
|
uint32x4_t special_cases = vorrq_u32 (zeroinfnan (ix), zeroinfnan (iy));
|
|
|
|
uint32x4_t sign_x = vandq_u32 (ix, SignMask);
|
|
uint32x4_t sign_y = vandq_u32 (iy, SignMask);
|
|
uint32x4_t sign_xy = veorq_u32 (sign_x, sign_y);
|
|
|
|
float32x4_t ax = vabsq_f32 (x);
|
|
float32x4_t ay = vabsq_f32 (y);
|
|
|
|
uint32x4_t pred_xlt0 = vcltzq_f32 (x);
|
|
uint32x4_t pred_aygtax = vcgtq_f32 (ay, ax);
|
|
|
|
/* Set up z for call to atanf. */
|
|
float32x4_t n = vbslq_f32 (pred_aygtax, vnegq_f32 (ax), ay);
|
|
float32x4_t d = vbslq_f32 (pred_aygtax, ay, ax);
|
|
float32x4_t z = vdivq_f32 (n, d);
|
|
|
|
/* Work out the correct shift. */
|
|
float32x4_t shift = vreinterpretq_f32_u32 (
|
|
vandq_u32 (pred_xlt0, vreinterpretq_u32_f32 (v_f32 (-2.0f))));
|
|
shift = vbslq_f32 (pred_aygtax, vaddq_f32 (shift, v_f32 (1.0f)), shift);
|
|
shift = vmulq_f32 (shift, data_ptr->pi_over_2);
|
|
|
|
/* Calculate the polynomial approximation.
|
|
Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However,
|
|
a standard implementation using z8 creates spurious underflow
|
|
in the very last fma (when z^8 is small enough).
|
|
Therefore, we split the last fma into a mul and an fma.
|
|
Horner and single-level Estrin have higher errors that exceed
|
|
threshold. */
|
|
float32x4_t z2 = vmulq_f32 (z, z);
|
|
float32x4_t z4 = vmulq_f32 (z2, z2);
|
|
|
|
float32x4_t ret = vfmaq_f32 (
|
|
v_pairwise_poly_3_f32 (z2, z4, data_ptr->poly), z4,
|
|
vmulq_f32 (z4, v_pairwise_poly_3_f32 (z2, z4, data_ptr->poly + 4)));
|
|
|
|
/* y = shift + z * P(z^2). */
|
|
ret = vaddq_f32 (vfmaq_f32 (z, ret, vmulq_f32 (z2, z)), shift);
|
|
|
|
/* Account for the sign of y. */
|
|
ret = vreinterpretq_f32_u32 (
|
|
veorq_u32 (vreinterpretq_u32_f32 (ret), sign_xy));
|
|
|
|
if (__glibc_unlikely (v_any_u32 (special_cases)))
|
|
{
|
|
return special_case (y, x, ret, special_cases);
|
|
}
|
|
|
|
return ret;
|
|
}
|