glibc/sysdeps/aarch64/fpu/exp10_advsimd.c
Joe Ramsay 31aaf6fed9 aarch64: Add vector implementations of exp10 routines
Double-precision routines either reuse the exp table (AdvSIMD) or use
SVE FEXPA intruction.
2023-10-23 15:00:45 +01:00

146 lines
5.1 KiB
C

/* Double-precision vector (AdvSIMD) exp10 function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
/* Value of |x| above which scale overflows without special treatment. */
#define SpecialBound 306.0 /* floor (log10 (2^1023)) - 1. */
/* Value of n above which scale overflows even with special treatment. */
#define ScaleBound 163840.0 /* 1280.0 * N. */
const static struct data
{
float64x2_t poly[4];
float64x2_t log10_2, log2_10_hi, log2_10_lo, shift;
#if !WANT_SIMD_EXCEPT
float64x2_t special_bound, scale_thresh;
#endif
} data = {
/* Coefficients generated using Remez algorithm.
rel error: 0x1.5ddf8f28p-54
abs error: 0x1.5ed266c8p-54 in [ -log10(2)/256, log10(2)/256 ]
maxerr: 1.14432 +0.5 ulp. */
.poly = { V2 (0x1.26bb1bbb5524p1), V2 (0x1.53524c73cecdap1),
V2 (0x1.047060efb781cp1), V2 (0x1.2bd76040f0d16p0) },
.log10_2 = V2 (0x1.a934f0979a371p8), /* N/log2(10). */
.log2_10_hi = V2 (0x1.34413509f79ffp-9), /* log2(10)/N. */
.log2_10_lo = V2 (-0x1.9dc1da994fd21p-66),
.shift = V2 (0x1.8p+52),
#if !WANT_SIMD_EXCEPT
.scale_thresh = V2 (ScaleBound),
.special_bound = V2 (SpecialBound),
#endif
};
#define N (1 << V_EXP_TABLE_BITS)
#define IndexMask v_u64 (N - 1)
#if WANT_SIMD_EXCEPT
# define TinyBound v_u64 (0x2000000000000000) /* asuint64 (0x1p-511). */
# define BigBound v_u64 (0x4070000000000000) /* asuint64 (0x1p8). */
# define Thres v_u64 (0x2070000000000000) /* BigBound - TinyBound. */
static inline float64x2_t VPCS_ATTR
special_case (float64x2_t x, float64x2_t y, uint64x2_t cmp)
{
/* If fenv exceptions are to be triggered correctly, fall back to the scalar
routine for special lanes. */
return v_call_f64 (exp10, x, y, cmp);
}
#else
# define SpecialOffset v_u64 (0x6000000000000000) /* 0x1p513. */
/* SpecialBias1 + SpecialBias1 = asuint(1.0). */
# define SpecialBias1 v_u64 (0x7000000000000000) /* 0x1p769. */
# define SpecialBias2 v_u64 (0x3010000000000000) /* 0x1p-254. */
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t s, float64x2_t y, float64x2_t n,
const struct data *d)
{
/* 2^(n/N) may overflow, break it up into s1*s2. */
uint64x2_t b = vandq_u64 (vcltzq_f64 (n), SpecialOffset);
float64x2_t s1 = vreinterpretq_f64_u64 (vsubq_u64 (SpecialBias1, b));
float64x2_t s2 = vreinterpretq_f64_u64 (
vaddq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (s), SpecialBias2), b));
uint64x2_t cmp = vcagtq_f64 (n, d->scale_thresh);
float64x2_t r1 = vmulq_f64 (s1, s1);
float64x2_t r0 = vmulq_f64 (vfmaq_f64 (s2, y, s2), s1);
return vbslq_f64 (cmp, r1, r0);
}
#endif
/* Fast vector implementation of exp10.
Maximum measured error is 1.64 ulp.
_ZGVnN2v_exp10(0x1.ccd1c9d82cc8cp+0) got 0x1.f8dab6d7fed0cp+5
want 0x1.f8dab6d7fed0ap+5. */
float64x2_t VPCS_ATTR V_NAME_D1 (exp10) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
uint64x2_t cmp;
#if WANT_SIMD_EXCEPT
/* If any lanes are special, mask them with 1 and retain a copy of x to allow
special_case to fix special lanes later. This is only necessary if fenv
exceptions are to be triggered correctly. */
float64x2_t xm = x;
uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x));
cmp = vcgeq_u64 (vsubq_u64 (iax, TinyBound), Thres);
if (__glibc_unlikely (v_any_u64 (cmp)))
x = vbslq_f64 (cmp, v_f64 (1), x);
#else
cmp = vcageq_f64 (x, d->special_bound);
#endif
/* n = round(x/(log10(2)/N)). */
float64x2_t z = vfmaq_f64 (d->shift, x, d->log10_2);
uint64x2_t u = vreinterpretq_u64_f64 (z);
float64x2_t n = vsubq_f64 (z, d->shift);
/* r = x - n*log10(2)/N. */
float64x2_t r = x;
r = vfmsq_f64 (r, d->log2_10_hi, n);
r = vfmsq_f64 (r, d->log2_10_lo, n);
uint64x2_t e = vshlq_n_u64 (u, 52 - V_EXP_TABLE_BITS);
uint64x2_t i = vandq_u64 (u, IndexMask);
/* y = exp10(r) - 1 ~= C0 r + C1 r^2 + C2 r^3 + C3 r^4. */
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t p = vfmaq_f64 (d->poly[0], r, d->poly[1]);
float64x2_t y = vfmaq_f64 (d->poly[2], r, d->poly[3]);
p = vfmaq_f64 (p, y, r2);
y = vmulq_f64 (r, p);
/* s = 2^(n/N). */
u = v_lookup_u64 (__v_exp_data, i);
float64x2_t s = vreinterpretq_f64_u64 (vaddq_u64 (u, e));
if (__glibc_unlikely (v_any_u64 (cmp)))
#if WANT_SIMD_EXCEPT
return special_case (xm, vfmaq_f64 (s, y, s), cmp);
#else
return special_case (s, y, n, d);
#endif
return vfmaq_f64 (s, y, s);
}