mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 15:00:06 +00:00
ad39cce0da
Similar to various other bugs in this area, some sin and sincos implementations do not raise the underflow exception for subnormal arguments, when the result is tiny and inexact. This patch forces the exception in a similar way to previous fixes. Tested for x86_64, x86, mips64 and powerpc. [BZ #16526] [BZ #16538] * sysdeps/ieee754/dbl-64/s_sin.c: Include <float.h>. (__sin): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/flt-32/k_sinf.c: Include <float.h>. (__kernel_sinf): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128/k_sincosl.c: Include <float.h>. (__kernel_sincosl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128/k_sinl.c: Include <float.h>. (__kernel_sinl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128ibm/k_sincosl.c: Include <float.h>. (__kernel_sincosl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128ibm/k_sinl.c: Include <float.h>. (__kernel_sinl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-96/k_sinl.c: Include <float.h>. (__kernel_sinl): Force underflow exception for arguments with small absolute value. * sysdeps/powerpc/fpu/k_sinf.c: Include <float.h>. (__kernel_sinf): Force underflow exception for arguments with small absolute value. * math/auto-libm-test-in: Add more tests of sin and sincos. * math/auto-libm-test-out: Regenerated.
1254 lines
34 KiB
C
1254 lines
34 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/****************************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:usncs.c */
|
|
/* */
|
|
/* FUNCTIONS: usin */
|
|
/* ucos */
|
|
/* slow */
|
|
/* slow1 */
|
|
/* slow2 */
|
|
/* sloww */
|
|
/* sloww1 */
|
|
/* sloww2 */
|
|
/* bsloww */
|
|
/* bsloww1 */
|
|
/* bsloww2 */
|
|
/* cslow2 */
|
|
/* csloww */
|
|
/* csloww1 */
|
|
/* csloww2 */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
|
|
/* branred.c sincos32.c dosincos.c mpa.c */
|
|
/* sincos.tbl */
|
|
/* */
|
|
/* An ultimate sin and routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/****************************************************************************/
|
|
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include "endian.h"
|
|
#include "mydefs.h"
|
|
#include "usncs.h"
|
|
#include "MathLib.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <fenv.h>
|
|
|
|
/* Helper macros to compute sin of the input values. */
|
|
#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
|
|
|
|
#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
|
|
|
|
/* The computed polynomial is a variation of the Taylor series expansion for
|
|
sin(a):
|
|
|
|
a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
|
|
|
|
The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
|
|
on. The result is returned to LHS and correction in COR. */
|
|
#define TAYLOR_SIN(xx, a, da, cor) \
|
|
({ \
|
|
double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \
|
|
double res = (a) + t; \
|
|
(cor) = ((a) - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
/* This is again a variation of the Taylor series expansion with the term
|
|
x^3/3! expanded into the following for better accuracy:
|
|
|
|
bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
|
|
|
|
The correction term is dx and bb + aa = -1/3!
|
|
*/
|
|
#define TAYLOR_SLOW(x0, dx, cor) \
|
|
({ \
|
|
static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ \
|
|
double xx = (x0) * (x0); \
|
|
double x1 = ((x0) + th2_36) - th2_36; \
|
|
double y = aa * x1 * x1 * x1; \
|
|
double r = (x0) + y; \
|
|
double x2 = ((x0) - x1) + (dx); \
|
|
double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2) \
|
|
* (x0) + aa * x2 * x2 * x2 + (dx)); \
|
|
t = (((x0) - r) + y) + t; \
|
|
double res = r + t; \
|
|
(cor) = (r - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
|
|
({ \
|
|
int4 k = u.i[LOW_HALF] << 2; \
|
|
sn = __sincostab.x[k]; \
|
|
ssn = __sincostab.x[k + 1]; \
|
|
cs = __sincostab.x[k + 2]; \
|
|
ccs = __sincostab.x[k + 3]; \
|
|
})
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
extern const union
|
|
{
|
|
int4 i[880];
|
|
double x[440];
|
|
} __sincostab attribute_hidden;
|
|
|
|
static const double
|
|
sn3 = -1.66666666666664880952546298448555E-01,
|
|
sn5 = 8.33333214285722277379541354343671E-03,
|
|
cs2 = 4.99999999999999999999950396842453E-01,
|
|
cs4 = -4.16666666666664434524222570944589E-02,
|
|
cs6 = 1.38888874007937613028114285595617E-03;
|
|
|
|
static const double t22 = 0x1.8p22;
|
|
|
|
void __dubsin (double x, double dx, double w[]);
|
|
void __docos (double x, double dx, double w[]);
|
|
double __mpsin (double x, double dx, bool reduce_range);
|
|
double __mpcos (double x, double dx, bool reduce_range);
|
|
static double slow (double x);
|
|
static double slow1 (double x);
|
|
static double slow2 (double x);
|
|
static double sloww (double x, double dx, double orig);
|
|
static double sloww1 (double x, double dx, double orig, int m);
|
|
static double sloww2 (double x, double dx, double orig, int n);
|
|
static double bsloww (double x, double dx, double orig, int n);
|
|
static double bsloww1 (double x, double dx, double orig, int n);
|
|
static double bsloww2 (double x, double dx, double orig, int n);
|
|
int __branred (double x, double *a, double *aa);
|
|
static double cslow2 (double x);
|
|
static double csloww (double x, double dx, double orig);
|
|
static double csloww1 (double x, double dx, double orig, int m);
|
|
static double csloww2 (double x, double dx, double orig, int n);
|
|
|
|
/* Given a number partitioned into U and X such that U is an index into the
|
|
sin/cos table, this macro computes the cosine of the number by combining
|
|
the sin and cos of X (as computed by a variation of the Taylor series) with
|
|
the values looked up from the sin/cos table to get the result in RES and a
|
|
correction value in COR. */
|
|
static double
|
|
do_cos (mynumber u, double x, double *corp)
|
|
{
|
|
double xx, s, sn, ssn, c, cs, ccs, res, cor;
|
|
xx = x * x;
|
|
s = x + x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ccs - s * ssn - cs * c) - sn * s;
|
|
res = cs + cor;
|
|
cor = (cs - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of DO_COS where the number is partitioned into U, X
|
|
and DX. EPS is the adjustment to the correction COR. */
|
|
static double
|
|
do_cos_slow (mynumber u, double x, double dx, double eps, double *corp)
|
|
{
|
|
double xx, y, x1, x2, e1, e2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
e1 = (sn + t22) - t22;
|
|
e2 = (sn - e1) + ssn;
|
|
cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
|
|
y = cs - e1 * x1;
|
|
cor = cor + ((cs - y) - e1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + eps;
|
|
else
|
|
cor = 1.0005 * cor - eps;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Given a number partitioned into U and X and DX such that U is an index into
|
|
the sin/cos table, this macro computes the sine of the number by combining
|
|
the sin and cos of X (as computed by a variation of the Taylor series) with
|
|
the values looked up from the sin/cos table to get the result in RES and a
|
|
correction value in COR. */
|
|
static double
|
|
do_sin (mynumber u, double x, double dx, double *corp)
|
|
{
|
|
double xx, s, sn, ssn, c, cs, ccs, cor, res;
|
|
xx = x * x;
|
|
s = x + (dx + x * xx * (sn3 + xx * sn5));
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ssn + s * ccs - sn * c) + cs * s;
|
|
res = sn + cor;
|
|
cor = (sn - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of res = do_sin where the number is partitioned into U, X
|
|
and DX. EPS is the adjustment to the correction COR. */
|
|
static double
|
|
do_sin_slow (mynumber u, double x, double dx, double eps, double *corp)
|
|
{
|
|
double xx, y, x1, x2, c1, c2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
c1 = (cs + t22) - t22;
|
|
c2 = (cs - c1) + ccs;
|
|
cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
|
|
y = sn + c1 * x1;
|
|
cor = cor + ((sn - y) + c1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + eps;
|
|
else
|
|
cor = 1.0005 * cor - eps;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Reduce range of X and compute sin of a + da. K is the amount by which to
|
|
rotate the quadrants. This allows us to use the same routine to compute cos
|
|
by simply rotating the quadrants by 1. */
|
|
static inline double
|
|
__always_inline
|
|
reduce_and_compute (double x, unsigned int k)
|
|
{
|
|
double retval = 0, a, da;
|
|
unsigned int n = __branred (x, &a, &da);
|
|
k = (n + k) % 4;
|
|
switch (k)
|
|
{
|
|
case 0:
|
|
if (a * a < 0.01588)
|
|
retval = bsloww (a, da, x, n);
|
|
else
|
|
retval = bsloww1 (a, da, x, n);
|
|
break;
|
|
case 2:
|
|
if (a * a < 0.01588)
|
|
retval = bsloww (-a, -da, x, n);
|
|
else
|
|
retval = bsloww1 (-a, -da, x, n);
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
retval = bsloww2 (a, da, x, n);
|
|
break;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate sin routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) */
|
|
/*******************************************************************/
|
|
double
|
|
SECTION
|
|
__sin (double x)
|
|
{
|
|
double xx, res, t, cor, y, s, c, sn, ssn, cs, ccs, xn, a, da, db, eps, xn1,
|
|
xn2;
|
|
mynumber u, v;
|
|
int4 k, m, n;
|
|
double retval = 0;
|
|
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m; /* no sign */
|
|
if (k < 0x3e500000) /* if x->0 =>sin(x)=x */
|
|
{
|
|
if (fabs (x) < DBL_MIN)
|
|
{
|
|
double force_underflow = x * x;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
retval = x;
|
|
}
|
|
/*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
|
|
else if (k < 0x3fd00000)
|
|
{
|
|
xx = x * x;
|
|
/* Taylor series. */
|
|
t = POLYNOMIAL (xx) * (xx * x);
|
|
res = x + t;
|
|
cor = (x - res) + t;
|
|
retval = (res == res + 1.07 * cor) ? res : slow (x);
|
|
} /* else if (k < 0x3fd00000) */
|
|
/*---------------------------- 0.25<|x|< 0.855469---------------------- */
|
|
else if (k < 0x3feb6000)
|
|
{
|
|
u.x = (m > 0) ? big + x : big - x;
|
|
y = (m > 0) ? x - (u.x - big) : x + (u.x - big);
|
|
xx = y * y;
|
|
s = y + y * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
if (m <= 0)
|
|
{
|
|
sn = -sn;
|
|
ssn = -ssn;
|
|
}
|
|
cor = (ssn + s * ccs - sn * c) + cs * s;
|
|
res = sn + cor;
|
|
cor = (sn - res) + cor;
|
|
retval = (res == res + 1.096 * cor) ? res : slow1 (x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
/*----------------------- 0.855469 <|x|<2.426265 ----------------------*/
|
|
else if (k < 0x400368fd)
|
|
{
|
|
|
|
y = (m > 0) ? hp0 - x : hp0 + x;
|
|
if (y >= 0)
|
|
{
|
|
u.x = big + y;
|
|
y = (y - (u.x - big)) + hp1;
|
|
}
|
|
else
|
|
{
|
|
u.x = big - y;
|
|
y = (-hp1) - (y + (u.x - big));
|
|
}
|
|
res = do_cos (u, y, &cor);
|
|
retval = (res == res + 1.020 * cor) ? ((m > 0) ? res : -res) : slow2 (x);
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
|
|
else if (k < 0x419921FB)
|
|
{
|
|
t = (x * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (x - xn * mp1) - xn * mp2;
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn * mp3;
|
|
a = y - da;
|
|
da = (y - a) - da;
|
|
eps = fabs (x) * 1.2e-30;
|
|
|
|
switch (n)
|
|
{ /* quarter of unit circle */
|
|
case 0:
|
|
case 2:
|
|
xx = a * a;
|
|
if (n)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : sloww (a, da, x);
|
|
}
|
|
else
|
|
{
|
|
if (a > 0)
|
|
m = 1;
|
|
else
|
|
{
|
|
m = 0;
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big);
|
|
res = do_sin (u, y, da, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: sloww1 (a, da, x, m));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
|
: sloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
/*---------------------105414350 <|x|< 281474976710656 --------------------*/
|
|
else if (k < 0x42F00000)
|
|
{
|
|
t = (x * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
xn1 = (xn + 8.0e22) - 8.0e22;
|
|
xn2 = xn - xn1;
|
|
y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn1 * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
da = (da - xn2 * pp3) - xn * pp4;
|
|
a = t + da;
|
|
da = (t - a) + da;
|
|
eps = 1.0e-24;
|
|
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
case 2:
|
|
xx = a * a;
|
|
if (n)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
|
|
}
|
|
else
|
|
{
|
|
double t;
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
t = a;
|
|
db = da;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
t = -a;
|
|
db = -da;
|
|
}
|
|
u.x = big + t;
|
|
y = t - (u.x - big);
|
|
res = do_sin (u, y, db, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: bsloww1 (a, da, x, n));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
|
: bsloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* -----------------281474976710656 <|x| <2^1024----------------------------*/
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, 0);
|
|
|
|
/*--------------------- |x| > 2^1024 ----------------------------------*/
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate cos routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of cos(x) */
|
|
/*******************************************************************/
|
|
|
|
double
|
|
SECTION
|
|
__cos (double x)
|
|
{
|
|
double y, xx, res, t, cor, xn, a, da, db, eps, xn1,
|
|
xn2;
|
|
mynumber u, v;
|
|
int4 k, m, n;
|
|
|
|
double retval = 0;
|
|
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m;
|
|
|
|
/* |x|<2^-27 => cos(x)=1 */
|
|
if (k < 0x3e400000)
|
|
retval = 1.0;
|
|
|
|
else if (k < 0x3feb6000)
|
|
{ /* 2^-27 < |x| < 0.855469 */
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_cos (u, y, &cor);
|
|
retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
else if (k < 0x400368fd)
|
|
{ /* 0.855469 <|x|<2.426265 */ ;
|
|
y = hp0 - fabs (x);
|
|
a = y + hp1;
|
|
da = (y - a) + hp1;
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + 1.0e-31 : 1.02 * cor - 1.0e-31;
|
|
retval = (res == res + cor) ? res : csloww (a, da, x);
|
|
}
|
|
else
|
|
{
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big);
|
|
res = do_sin (u, y, da, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + 1.0e-31 : 1.035 * cor - 1.0e-31;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: csloww1 (a, da, x, m));
|
|
}
|
|
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
|
|
else if (k < 0x419921FB)
|
|
{ /* 2.426265<|x|< 105414350 */
|
|
t = (x * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (x - xn * mp1) - xn * mp2;
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn * mp3;
|
|
a = y - da;
|
|
da = (y - a) - da;
|
|
eps = fabs (x) * 1.2e-30;
|
|
|
|
switch (n)
|
|
{
|
|
case 1:
|
|
case 3:
|
|
xx = a * a;
|
|
if (n == 1)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
if (xx < 0.01588)
|
|
{
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : csloww (a, da, x);
|
|
}
|
|
else
|
|
{
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big);
|
|
res = do_sin (u, y, da, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: csloww1 (a, da, x, m));
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
case 2:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((n) ? -res : res)
|
|
: csloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
else if (k < 0x42F00000)
|
|
{
|
|
t = (x * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
xn1 = (xn + 8.0e22) - 8.0e22;
|
|
xn2 = xn - xn1;
|
|
y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn1 * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
da = (da - xn2 * pp3) - xn * pp4;
|
|
a = t + da;
|
|
da = (t - a) + da;
|
|
eps = 1.0e-24;
|
|
|
|
switch (n)
|
|
{
|
|
case 1:
|
|
case 3:
|
|
xx = a * a;
|
|
if (n == 1)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
if (xx < 0.01588)
|
|
{
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
|
|
}
|
|
else
|
|
{
|
|
double t;
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
t = a;
|
|
db = da;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
t = -a;
|
|
db = -da;
|
|
}
|
|
u.x = big + t;
|
|
y = t - (u.x - big);
|
|
res = do_sin (u, y, db, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: bsloww1 (a, da, x, n));
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
case 2:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((n) ? -res : res)
|
|
: bsloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* 281474976710656 <|x| <2^1024 */
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, 1);
|
|
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x; /* |x| > 2^1024 */
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpsin or dubsin */
|
|
/************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
slow (double x)
|
|
{
|
|
double res, cor, w[2];
|
|
res = TAYLOR_SLOW (x, 0, cor);
|
|
if (res == res + 1.0007 * cor)
|
|
return res;
|
|
else
|
|
{
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000001 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************/
|
|
/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/*******************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
slow1 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_sin_slow (u, y, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
else
|
|
{
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/**************************************************************************/
|
|
static double
|
|
SECTION
|
|
slow2 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, y1, y2, cor, res, del;
|
|
|
|
y = fabs (x);
|
|
y = hp0 - y;
|
|
if (y >= 0)
|
|
{
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
del = hp1;
|
|
}
|
|
else
|
|
{
|
|
u.x = big - y;
|
|
y = -(y + (u.x - big));
|
|
del = -hp1;
|
|
}
|
|
res = do_cos_slow (u, y, del, 0, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
else
|
|
{
|
|
y = fabs (x) - hp0;
|
|
y1 = y - hp1;
|
|
y2 = (y - y1) - hp1;
|
|
__docos (y1, y2, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/
|
|
/* to use Taylor series around zero and (x+dx) */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww (double x, double dx, double orig)
|
|
{
|
|
double y, t, res, cor, w[2], a, da, xn;
|
|
mynumber v;
|
|
int4 n;
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + fabs (orig) * 3.1e-30;
|
|
else
|
|
cor = 1.0005 * cor - fabs (orig) * 3.1e-30;
|
|
|
|
if (res == res + cor)
|
|
return res;
|
|
else
|
|
{
|
|
(x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-30;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-30;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
{
|
|
t = (orig * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (orig - xn * mp1) - xn * mp2;
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
y = xn * pp4;
|
|
a = t - y;
|
|
da = ((t - a) - y) + da;
|
|
if (n & 2)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
(a > 0) ? __dubsin (a, da, w) : __dubsin (-a, -da, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-40;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-40;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (a > 0) ? w[0] : -w[0];
|
|
else
|
|
return __mpsin (orig, 0, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in first or */
|
|
/* third quarter of unit circle.Routine receive also (right argument) the */
|
|
/* original value of x for computing error of result.And if result not */
|
|
/* accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww1 (double x, double dx, double orig, int m)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_sin_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (m > 0) ? res : -res;
|
|
else
|
|
{
|
|
__dubsin (x, dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (m > 0) ? w[0] : -w[0];
|
|
else
|
|
return __mpsin (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in second or */
|
|
/* fourth quarter of unit circle.Routine receive also the original value */
|
|
/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
|
|
/* accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_cos_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
else
|
|
{
|
|
__docos (x, dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
else
|
|
return __mpsin (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* is small enough to use Taylor series around zero and (x+dx) */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww (double x, double dx, double orig, int n)
|
|
{
|
|
double res, cor, w[2];
|
|
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
cor = (cor > 0) ? 1.0005 * cor + 1.1e-24 : 1.0005 * cor - 1.1e-24;
|
|
if (res == res + cor)
|
|
return res;
|
|
else
|
|
{
|
|
(x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000001 * w[1] - 1.1e-24;
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of result.*/
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww1 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
dx = (x > 0) ? dx : -dx;
|
|
res = do_sin_slow (u, y, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
else
|
|
{
|
|
__dubsin (fabs (x), dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-24;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in second or fourth quarter of unit circle.Routine receive also the */
|
|
/* original value and quarter(n= 1or 3)of x for computing error of result. */
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
dx = (x > 0) ? dx : -dx;
|
|
res = do_cos_slow (u, y, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
else
|
|
{
|
|
__docos (fabs (x), dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-24;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
else
|
|
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpcos or docos */
|
|
/************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
cslow2 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_cos_slow (u, y, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
else
|
|
{
|
|
y = fabs (x);
|
|
__docos (y, 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return w[0];
|
|
else
|
|
return __mpcos (x, 0, false);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute cos(x+dx) (Double-Length number) where x is small enough*/
|
|
/* to use Taylor series around zero and (x+dx) .Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
|
|
static double
|
|
SECTION
|
|
csloww (double x, double dx, double orig)
|
|
{
|
|
double y, t, res, cor, w[2], a, da, xn;
|
|
mynumber v;
|
|
int4 n;
|
|
|
|
/* Taylor series */
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + fabs (orig) * 3.1e-30;
|
|
else
|
|
cor = 1.0005 * cor - fabs (orig) * 3.1e-30;
|
|
|
|
if (res == res + cor)
|
|
return res;
|
|
else
|
|
{
|
|
(x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-30;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-30;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
else
|
|
{
|
|
t = (orig * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (orig - xn * mp1) - xn * mp2;
|
|
n = v.i[LOW_HALF] & 3;
|
|
da = xn * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
y = xn * pp4;
|
|
a = t - y;
|
|
da = ((t - a) - y) + da;
|
|
if (n == 1)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
(a > 0) ? __dubsin (a, da, w) : __dubsin (-a, -da, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-40;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-40;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (a > 0) ? w[0] : -w[0];
|
|
else
|
|
return __mpcos (orig, 0, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in first or */
|
|
/* third quarter of unit circle.Routine receive also (right argument) the */
|
|
/* original value of x for computing error of result.And if result not */
|
|
/* accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
csloww1 (double x, double dx, double orig, int m)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_sin_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (m > 0) ? res : -res;
|
|
else
|
|
{
|
|
__dubsin (x, dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
if (w[0] == w[0] + cor)
|
|
return (m > 0) ? w[0] : -w[0];
|
|
else
|
|
return __mpcos (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in second or */
|
|
/* fourth quarter of unit circle.Routine receive also the original value */
|
|
/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
|
|
/* accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
csloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_cos_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (n) ? -res : res;
|
|
else
|
|
{
|
|
__docos (x, dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
if (w[0] == w[0] + cor)
|
|
return (n) ? -w[0] : w[0];
|
|
else
|
|
return __mpcos (orig, 0, true);
|
|
}
|
|
}
|
|
|
|
#ifndef __cos
|
|
weak_alias (__cos, cos)
|
|
# ifdef NO_LONG_DOUBLE
|
|
strong_alias (__cos, __cosl)
|
|
weak_alias (__cos, cosl)
|
|
# endif
|
|
#endif
|
|
#ifndef __sin
|
|
weak_alias (__sin, sin)
|
|
# ifdef NO_LONG_DOUBLE
|
|
strong_alias (__sin, __sinl)
|
|
weak_alias (__sin, sinl)
|
|
# endif
|
|
#endif
|