mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-04 19:00:09 +00:00
323592fdc9
The pthread_cond_clockwait and pthread_cond_timedwait have been converted to support 64 bit time. This change introduces new futex_abstimed_wait_cancelable64 function in ./sysdeps/nptl/futex-helpers.c, which uses futex_time64 where possible and tries to replace low-level preprocessor macros from lowlevellock-futex.h The pthread_cond_{clock|timed}wait only accepts absolute time. Moreover, there is no need to check for NULL passed as *abstime pointer as __pthread_cond_wait_common() always passes non-NULL struct __timespec64 pointer to futex_abstimed_wait_cancellable64(). For systems with __TIMESIZE != 64 && __WORDSIZE == 32: - Conversions between 64 bit time to 32 bit are necessary - Redirection to __pthread_cond_{clock|timed}wait64 will provide support for 64 bit time The futex_abstimed_wait_cancelable64 function has been put into a separate file on the purpose - to avoid issues apparent on the m68k architecture related to small number of available registers (there is not enough registers to put all necessary arguments in them if the above function would be added to futex-internal.h with __always_inline attribute). In fact - new function - namely __futex_abstimed_wait_cancellable32 is used to reduce number of needed registers (as some in-register values are stored on the stack when function call is made). Build tests: ./src/scripts/build-many-glibcs.py glibcs Run-time tests: - Run specific tests on ARM/x86 32bit systems (qemu): https://github.com/lmajewski/meta-y2038 and run tests: https://github.com/lmajewski/y2038-tests/commits/master Above tests were performed with Y2038 redirection applied as well as without to test the proper usage of both __pthread_cond_{clock|timed}wait64 and __pthread_cond_{clock|timed}wait. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
533 lines
20 KiB
C
533 lines
20 KiB
C
/* futex operations for glibc-internal use. Stub version; do not include
|
|
this file directly.
|
|
Copyright (C) 2014-2020 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef STUB_FUTEX_INTERNAL_H
|
|
#define STUB_FUTEX_INTERNAL_H
|
|
|
|
#include <sys/time.h>
|
|
#include <stdio.h>
|
|
#include <stdbool.h>
|
|
#include <libc-diag.h>
|
|
|
|
/* This file defines futex operations used internally in glibc. A futex
|
|
consists of the so-called futex word in userspace, which is of type
|
|
unsigned int and represents an application-specific condition, and kernel
|
|
state associated with this particular futex word (e.g., wait queues). The
|
|
futex operations we provide are wrappers for the futex syscalls and add
|
|
glibc-specific error checking of the syscall return value. We abort on
|
|
error codes that are caused by bugs in glibc or in the calling application,
|
|
or when an error code is not known. We return error codes that can arise
|
|
in correct executions to the caller. Each operation calls out exactly the
|
|
return values that callers need to handle.
|
|
|
|
The private flag must be either FUTEX_PRIVATE or FUTEX_SHARED.
|
|
FUTEX_PRIVATE is always supported, and the implementation can internally
|
|
use FUTEX_SHARED when FUTEX_PRIVATE is requested. FUTEX_SHARED is not
|
|
necessarily supported (use futex_supports_pshared to detect this).
|
|
|
|
We expect callers to only use these operations if futexes and the
|
|
specific futex operations being used are supported (e.g., FUTEX_SHARED).
|
|
|
|
Given that waking other threads waiting on a futex involves concurrent
|
|
accesses to the futex word, you must use atomic operations to access the
|
|
futex word.
|
|
|
|
Both absolute and relative timeouts can be used. An absolute timeout
|
|
expires when the given specific point in time on the specified clock
|
|
passes, or when it already has passed. A relative timeout expires when
|
|
the given duration of time on the CLOCK_MONOTONIC clock passes.
|
|
|
|
Due to POSIX requirements on when synchronization data structures such
|
|
as mutexes or semaphores can be destroyed and due to the futex design
|
|
having separate fast/slow paths for wake-ups, we need to consider that
|
|
futex_wake calls might effectively target a data structure that has been
|
|
destroyed and reused for another object, or unmapped; thus, some
|
|
errors or spurious wake-ups can happen in correct executions that would
|
|
not be possible in a program using just a single futex whose lifetime
|
|
does not end before the program terminates. For background, see:
|
|
https://sourceware.org/ml/libc-alpha/2014-04/msg00075.html
|
|
https://lkml.org/lkml/2014/11/27/472 */
|
|
|
|
/* Defined this way for interoperability with lowlevellock.
|
|
FUTEX_PRIVATE must be zero because the initializers for pthread_mutex_t,
|
|
pthread_rwlock_t, and pthread_cond_t initialize the respective field of
|
|
those structures to zero, and we want FUTEX_PRIVATE to be the default. */
|
|
#define FUTEX_PRIVATE LLL_PRIVATE
|
|
#define FUTEX_SHARED LLL_SHARED
|
|
#if FUTEX_PRIVATE != 0
|
|
# error FUTEX_PRIVATE must be equal to 0
|
|
#endif
|
|
|
|
/* Calls __libc_fatal with an error message. Convenience function for
|
|
concrete implementations of the futex interface. */
|
|
static __always_inline __attribute__ ((__noreturn__)) void
|
|
futex_fatal_error (void)
|
|
{
|
|
__libc_fatal ("The futex facility returned an unexpected error code.\n");
|
|
}
|
|
|
|
|
|
/* The Linux kernel treats provides absolute timeouts based on the
|
|
CLOCK_REALTIME clock and relative timeouts measured against the
|
|
CLOCK_MONOTONIC clock.
|
|
|
|
We expect a Linux kernel version of 2.6.22 or more recent (since this
|
|
version, EINTR is not returned on spurious wake-ups anymore). */
|
|
|
|
/* Returns EINVAL if PSHARED is neither PTHREAD_PROCESS_PRIVATE nor
|
|
PTHREAD_PROCESS_SHARED; otherwise, returns 0 if PSHARED is supported, and
|
|
ENOTSUP if not. */
|
|
static __always_inline int
|
|
futex_supports_pshared (int pshared)
|
|
{
|
|
if (__glibc_likely (pshared == PTHREAD_PROCESS_PRIVATE))
|
|
return 0;
|
|
else if (pshared == PTHREAD_PROCESS_SHARED)
|
|
return 0;
|
|
else
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Atomically wrt other futex operations on the same futex, this blocks iff
|
|
the value *FUTEX_WORD matches the expected value. This is
|
|
semantically equivalent to:
|
|
l = <get lock associated with futex> (FUTEX_WORD);
|
|
wait_flag = <get wait_flag associated with futex> (FUTEX_WORD);
|
|
lock (l);
|
|
val = atomic_load_relaxed (FUTEX_WORD);
|
|
if (val != expected) { unlock (l); return EAGAIN; }
|
|
atomic_store_relaxed (wait_flag, true);
|
|
unlock (l);
|
|
// Now block; can time out in futex_time_wait (see below)
|
|
while (atomic_load_relaxed(wait_flag) && !<spurious wake-up>);
|
|
|
|
Note that no guarantee of a happens-before relation between a woken
|
|
futex_wait and a futex_wake is documented; however, this does not matter
|
|
in practice because we have to consider spurious wake-ups (see below),
|
|
and thus would not be able to reliably reason about which futex_wake woke
|
|
us.
|
|
|
|
Returns 0 if woken by a futex operation or spuriously. (Note that due to
|
|
the POSIX requirements mentioned above, we need to conservatively assume
|
|
that unrelated futex_wake operations could wake this futex; it is easiest
|
|
to just be prepared for spurious wake-ups.)
|
|
Returns EAGAIN if the futex word did not match the expected value.
|
|
Returns EINTR if waiting was interrupted by a signal.
|
|
|
|
Note that some previous code in glibc assumed the underlying futex
|
|
operation (e.g., syscall) to start with or include the equivalent of a
|
|
seq_cst fence; this allows one to avoid an explicit seq_cst fence before
|
|
a futex_wait call when synchronizing similar to Dekker synchronization.
|
|
However, we make no such guarantee here. */
|
|
static __always_inline int
|
|
futex_wait (unsigned int *futex_word, unsigned int expected, int private)
|
|
{
|
|
int err = lll_futex_timed_wait (futex_word, expected, NULL, private);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
return -err;
|
|
|
|
case -ETIMEDOUT: /* Cannot have happened as we provided no timeout. */
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Like futex_wait but does not provide any indication why we stopped waiting.
|
|
Thus, when this function returns, you have to always check FUTEX_WORD to
|
|
determine whether you need to continue waiting, and you cannot detect
|
|
whether the waiting was interrupted by a signal. Example use:
|
|
while (atomic_load_relaxed (&futex_word) == 23)
|
|
futex_wait_simple (&futex_word, 23, FUTEX_PRIVATE);
|
|
This is common enough to make providing this wrapper worthwhile. */
|
|
static __always_inline void
|
|
futex_wait_simple (unsigned int *futex_word, unsigned int expected,
|
|
int private)
|
|
{
|
|
ignore_value (futex_wait (futex_word, expected, private));
|
|
}
|
|
|
|
|
|
/* Like futex_wait but is a POSIX cancellation point. */
|
|
static __always_inline int
|
|
futex_wait_cancelable (unsigned int *futex_word, unsigned int expected,
|
|
int private)
|
|
{
|
|
int oldtype;
|
|
oldtype = __pthread_enable_asynccancel ();
|
|
int err = lll_futex_timed_wait (futex_word, expected, NULL, private);
|
|
__pthread_disable_asynccancel (oldtype);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
return -err;
|
|
|
|
case -ETIMEDOUT: /* Cannot have happened as we provided no timeout. */
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Like futex_wait, but will eventually time out (i.e., stop being
|
|
blocked) after the duration of time provided (i.e., RELTIME) has
|
|
passed. The caller must provide a normalized RELTIME. RELTIME can also
|
|
equal NULL, in which case this function behaves equivalent to futex_wait.
|
|
|
|
Returns the same values as futex_wait under those same conditions;
|
|
additionally, returns ETIMEDOUT if the timeout expired.
|
|
*/
|
|
static __always_inline int
|
|
futex_reltimed_wait (unsigned int* futex_word, unsigned int expected,
|
|
const struct timespec* reltime, int private)
|
|
{
|
|
int err = lll_futex_timed_wait (futex_word, expected, reltime, private);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
return -err;
|
|
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Like futex_reltimed_wait but is a POSIX cancellation point. */
|
|
static __always_inline int
|
|
futex_reltimed_wait_cancelable (unsigned int* futex_word,
|
|
unsigned int expected,
|
|
const struct timespec* reltime, int private)
|
|
{
|
|
int oldtype;
|
|
oldtype = LIBC_CANCEL_ASYNC ();
|
|
int err = lll_futex_timed_wait (futex_word, expected, reltime, private);
|
|
LIBC_CANCEL_RESET (oldtype);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
return -err;
|
|
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Check whether the specified clockid is supported by
|
|
futex_abstimed_wait and futex_abstimed_wait_cancelable. */
|
|
static __always_inline int
|
|
futex_abstimed_supported_clockid (clockid_t clockid)
|
|
{
|
|
return lll_futex_supported_clockid (clockid);
|
|
}
|
|
|
|
/* Like futex_reltimed_wait, but the provided timeout (ABSTIME) is an
|
|
absolute point in time; a call will time out after this point in time. */
|
|
static __always_inline int
|
|
futex_abstimed_wait (unsigned int* futex_word, unsigned int expected,
|
|
clockid_t clockid,
|
|
const struct timespec* abstime, int private)
|
|
{
|
|
/* Work around the fact that the kernel rejects negative timeout values
|
|
despite them being valid. */
|
|
if (__glibc_unlikely ((abstime != NULL) && (abstime->tv_sec < 0)))
|
|
return ETIMEDOUT;
|
|
int err = lll_futex_clock_wait_bitset (futex_word, expected,
|
|
clockid, abstime,
|
|
private);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
return -err;
|
|
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment, unsupported
|
|
clockid or due to the timeout not being
|
|
normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Like futex_reltimed_wait but is a POSIX cancellation point. */
|
|
static __always_inline int
|
|
futex_abstimed_wait_cancelable (unsigned int* futex_word,
|
|
unsigned int expected,
|
|
clockid_t clockid,
|
|
const struct timespec* abstime, int private)
|
|
{
|
|
/* Work around the fact that the kernel rejects negative timeout values
|
|
despite them being valid. */
|
|
if (__glibc_unlikely ((abstime != NULL) && (abstime->tv_sec < 0)))
|
|
return ETIMEDOUT;
|
|
int oldtype;
|
|
oldtype = __pthread_enable_asynccancel ();
|
|
int err = lll_futex_clock_wait_bitset (futex_word, expected,
|
|
clockid, abstime,
|
|
private);
|
|
__pthread_disable_asynccancel (oldtype);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
return -err;
|
|
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Atomically wrt other futex operations on the same futex, this unblocks the
|
|
specified number of processes, or all processes blocked on this futex if
|
|
there are fewer than the specified number. Semantically, this is
|
|
equivalent to:
|
|
l = <get lock associated with futex> (FUTEX_WORD);
|
|
lock (l);
|
|
for (res = 0; PROCESSES_TO_WAKE > 0; PROCESSES_TO_WAKE--, res++) {
|
|
if (<no process blocked on futex>) break;
|
|
wf = <get wait_flag of a process blocked on futex> (FUTEX_WORD);
|
|
// No happens-before guarantee with woken futex_wait (see above)
|
|
atomic_store_relaxed (wf, 0);
|
|
}
|
|
return res;
|
|
|
|
Note that we need to support futex_wake calls to past futexes whose memory
|
|
has potentially been reused due to POSIX' requirements on synchronization
|
|
object destruction (see above); therefore, we must not report or abort
|
|
on most errors. */
|
|
static __always_inline void
|
|
futex_wake (unsigned int* futex_word, int processes_to_wake, int private)
|
|
{
|
|
int res = lll_futex_wake (futex_word, processes_to_wake, private);
|
|
/* No error. Ignore the number of woken processes. */
|
|
if (res >= 0)
|
|
return;
|
|
switch (res)
|
|
{
|
|
case -EFAULT: /* Could have happened due to memory reuse. */
|
|
case -EINVAL: /* Could be either due to incorrect alignment (a bug in
|
|
glibc or in the application) or due to memory being
|
|
reused for a PI futex. We cannot distinguish between the
|
|
two causes, and one of them is correct use, so we do not
|
|
act in this case. */
|
|
return;
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* The operation checks the value of the futex, if the value is 0, then
|
|
it is atomically set to the caller's thread ID. If the futex value is
|
|
nonzero, it is atomically sets the FUTEX_WAITERS bit, which signals wrt
|
|
other futex owner that it cannot unlock the futex in user space by
|
|
atomically by setting its value to 0.
|
|
|
|
If more than one wait operations is issued, the enqueueing of the waiters
|
|
are done in descending priority order.
|
|
|
|
The ABSTIME arguments provides an absolute timeout (measured against the
|
|
CLOCK_REALTIME clock). If TIMEOUT is NULL, the operation will block
|
|
indefinitely.
|
|
|
|
Returns:
|
|
|
|
- 0 if woken by a PI unlock operation or spuriously.
|
|
- EAGAIN if the futex owner thread ID is about to exit, but has not yet
|
|
handled the state cleanup.
|
|
- EDEADLK if the futex is already locked by the caller.
|
|
- ESRCH if the thread ID int he futex does not exist.
|
|
- EINVAL is the state is corrupted or if there is a waiter on the
|
|
futex.
|
|
- ETIMEDOUT if the ABSTIME expires.
|
|
*/
|
|
static __always_inline int
|
|
futex_lock_pi (unsigned int *futex_word, const struct timespec *abstime,
|
|
int private)
|
|
{
|
|
int err = lll_futex_timed_lock_pi (futex_word, abstime, private);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
case -ESRCH:
|
|
case -EDEADLK:
|
|
case -EINVAL: /* This indicates either state corruption or that the kernel
|
|
found a waiter on futex address which is waiting via
|
|
FUTEX_WAIT or FUTEX_WAIT_BITSET. This is reported on
|
|
some futex_lock_pi usage (pthread_mutex_timedlock for
|
|
instance). */
|
|
return -err;
|
|
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
case -ENOSYS: /* Must have been caused by a glibc bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* Wakes the top priority waiter that called a futex_lock_pi operation on
|
|
the futex.
|
|
|
|
Returns the same values as futex_lock_pi under those same conditions;
|
|
additionally, returns EPERM when the caller is not allowed to attach
|
|
itself to the futex. */
|
|
static __always_inline int
|
|
futex_unlock_pi (unsigned int *futex_word, int private)
|
|
{
|
|
int err = lll_futex_timed_unlock_pi (futex_word, private);
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
case -ESRCH:
|
|
case -EDEADLK:
|
|
case -ENOSYS:
|
|
case -EPERM: /* The caller is not allowed to attach itself to the futex.
|
|
Used to check if PI futexes are supported by the
|
|
kernel. */
|
|
return -err;
|
|
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
#ifndef __NR_futex_time64
|
|
# define __NR_futex_time64 __NR_futex
|
|
#endif
|
|
|
|
static __always_inline int
|
|
futex_timed_wait_cancel64 (pid_t *tidp, pid_t tid,
|
|
const struct __timespec64 *timeout, int private)
|
|
{
|
|
int err = INTERNAL_SYSCALL_CANCEL (futex_time64, tidp,
|
|
__lll_private_flag
|
|
(FUTEX_WAIT, private), tid, timeout);
|
|
#ifndef __ASSUME_TIME64_SYSCALLS
|
|
if (err == -ENOSYS)
|
|
{
|
|
if (in_time_t_range (timeout->tv_sec))
|
|
{
|
|
struct timespec ts32 = valid_timespec64_to_timespec (*timeout);
|
|
|
|
err = INTERNAL_SYSCALL_CANCEL (futex, tidp,
|
|
__lll_private_flag (FUTEX_WAIT,
|
|
private),
|
|
tid, &ts32);
|
|
}
|
|
else
|
|
err = -EOVERFLOW;
|
|
}
|
|
#endif
|
|
switch (err)
|
|
{
|
|
case 0:
|
|
case -EAGAIN:
|
|
case -EINTR:
|
|
case -ETIMEDOUT:
|
|
case -EDEADLK:
|
|
case -ENOSYS:
|
|
case -EOVERFLOW: /* Passed absolute timeout uses 64 bit time_t type, but
|
|
underlying kernel does not support 64 bit time_t futex
|
|
syscalls. */
|
|
case -EPERM: /* The caller is not allowed to attach itself to the futex.
|
|
Used to check if PI futexes are supported by the
|
|
kernel. */
|
|
return -err;
|
|
|
|
case -EINVAL: /* Either due to wrong alignment or due to the timeout not
|
|
being normalized. Must have been caused by a glibc or
|
|
application bug. */
|
|
case -EFAULT: /* Must have been caused by a glibc or application bug. */
|
|
/* No other errors are documented at this time. */
|
|
default:
|
|
futex_fatal_error ();
|
|
}
|
|
}
|
|
|
|
/* The futex_abstimed_wait_cancelable64 has been moved to a separate file
|
|
to avoid problems with exhausting available registers on some architectures
|
|
- e.g. on m68k architecture. */
|
|
int
|
|
__futex_abstimed_wait_cancelable64 (unsigned int* futex_word,
|
|
unsigned int expected, clockid_t clockid,
|
|
const struct __timespec64* abstime,
|
|
int private) attribute_hidden;
|
|
|
|
#endif /* futex-internal.h */
|