mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-29 14:01:20 +00:00
2008 lines
49 KiB
ArmAsm
2008 lines
49 KiB
ArmAsm
.file "atanl.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// History
|
|
// 02/02/00 (hand-optimized)
|
|
// 04/04/00 Unwind support added
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 03/13/01 Fixed flags when denormal raised on intermediate result
|
|
// 01/08/02 Improved speed.
|
|
// 02/06/02 Corrected .section statement
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: atanl(x) = inverse tangent(x), for double extended x values
|
|
// Function: atan2l(y,x) = atan(y/x), for double extended y, x values
|
|
//
|
|
// API
|
|
//
|
|
// long double atanl (long double x)
|
|
// long double atan2l (long double y, long double x)
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9 (Input for atan2l)
|
|
// f10-f15, f32-f83
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r51
|
|
// r49-r52 (Arguments to error support for 0,0 case)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Underflow exceptions may occur
|
|
// Special error handling for the y=0 and x=0 case
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// atanl(SNaN) = QNaN
|
|
// atanl(QNaN) = QNaN
|
|
// atanl(+/-0) = +/- 0
|
|
// atanl(+/-Inf) = +/-pi/2
|
|
//
|
|
// atan2l(Any NaN for x or y) = QNaN
|
|
// atan2l(+/-0,x) = +/-0 for x > 0
|
|
// atan2l(+/-0,x) = +/-pi for x < 0
|
|
// atan2l(+/-0,+0) = +/-0
|
|
// atan2l(+/-0,-0) = +/-pi
|
|
// atan2l(y,+/-0) = pi/2 y > 0
|
|
// atan2l(y,+/-0) = -pi/2 y < 0
|
|
// atan2l(+/-y, Inf) = +/-0 for finite y > 0
|
|
// atan2l(+/-Inf, x) = +/-pi/2 for finite x
|
|
// atan2l(+/-y, -Inf) = +/-pi for finite y > 0
|
|
// atan2l(+/-Inf, Inf) = +/-pi/4
|
|
// atan2l(+/-Inf, -Inf) = +/-3pi/4
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Mathematical Description
|
|
// ---------------------------
|
|
//
|
|
// The function ATANL( Arg_Y, Arg_X ) returns the "argument"
|
|
// or the "phase" of the complex number
|
|
//
|
|
// Arg_X + i Arg_Y
|
|
//
|
|
// or equivalently, the angle in radians from the positive
|
|
// x-axis to the line joining the origin and the point
|
|
// (Arg_X,Arg_Y)
|
|
//
|
|
//
|
|
// (Arg_X, Arg_Y) x
|
|
// \
|
|
// \
|
|
// \
|
|
// \
|
|
// \ angle between is ATANL(Arg_Y,Arg_X)
|
|
|
|
|
|
|
|
|
|
// \
|
|
// ------------------> X-axis
|
|
|
|
// Origin
|
|
//
|
|
// Moreover, this angle is reported in the range [-pi,pi] thus
|
|
//
|
|
// -pi <= ATANL( Arg_Y, Arg_X ) <= pi.
|
|
//
|
|
// From the geometry, it is easy to define ATANL when one of
|
|
// Arg_X or Arg_Y is +-0 or +-inf:
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 | normal case
|
|
// non-zero| sign(Y)*0: | | |
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
// One must take note that ATANL is NOT the arctangent of the
|
|
// value Arg_Y/Arg_X; but rather ATANL and arctan are related
|
|
// in a slightly more complicated way as follows:
|
|
//
|
|
// Let U := max(|Arg_X|, |Arg_Y|); V := min(|Arg_X|, |Arg_Y|);
|
|
// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;
|
|
// s_X be the sign of Arg_X, i.e., s_X = (-1)^sign_X;
|
|
//
|
|
// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;
|
|
// s_Y be the sign of Arg_Y, i.e., s_Y = (-1)^sign_Y;
|
|
//
|
|
// swap be 0 if |Arg_X| >= |Arg_Y| and 1 otherwise.
|
|
//
|
|
// Then, ATANL(Arg_Y, Arg_X) =
|
|
//
|
|
// / arctan(V/U) \ sign_X = 0 & swap = 0
|
|
// | pi/2 - arctan(V/U) | sign_X = 0 & swap = 1
|
|
// s_Y * | |
|
|
// | pi - arctan(V/U) | sign_X = 1 & swap = 0
|
|
// \ pi/2 + arctan(V/U) / sign_X = 1 & swap = 1
|
|
//
|
|
//
|
|
// This relationship also suggest that the algorithm's major
|
|
// task is to calculate arctan(V/U) for 0 < V <= U; and the
|
|
// final Result is given by
|
|
//
|
|
// s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }
|
|
//
|
|
// where
|
|
//
|
|
// (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately
|
|
//
|
|
// M(sign_X,swap) = 0 for sign_X = 0 and swap = 0
|
|
// 1 for swap = 1
|
|
// 2 for sign_X = 1 and swap = 0
|
|
//
|
|
// and
|
|
//
|
|
// sigma = { (sign_X XOR swap) : -1.0 : 1.0 }
|
|
//
|
|
// = (-1) ^ ( sign_X XOR swap )
|
|
//
|
|
// Both (P_hi,P_lo) and sigma can be stored in a table and fetched
|
|
// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a
|
|
// double-precision, and single-precision pair; and sigma can
|
|
// obviously be just a single-precision number.
|
|
//
|
|
// In the algorithm we propose, arctan(V/U) is calculated to high accuracy
|
|
// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is
|
|
// given by
|
|
//
|
|
// s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// We now discuss the calculation of arctan(V/U) for 0 < V <= U.
|
|
//
|
|
// For (V/U) < 2^(-3), we use a simple polynomial of the form
|
|
//
|
|
// z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))
|
|
//
|
|
// where z = V/U.
|
|
//
|
|
// For the sake of accuracy, the first term "z" must approximate V/U to
|
|
// extra precision. For z^3 and higher power, a working precision
|
|
// approximation to V/U suffices. Thus, we obtain:
|
|
//
|
|
// z_hi + z_lo = V/U to extra precision and
|
|
// z = V/U to working precision
|
|
//
|
|
// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)
|
|
//
|
|
// (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).
|
|
//
|
|
//
|
|
// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.
|
|
// Consider
|
|
//
|
|
// (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// then
|
|
// / \
|
|
// | (V/U) - z_hi |
|
|
|
|
// arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
|
|
// | 1 + (V/U)*z_hi |
|
|
// \ /
|
|
//
|
|
// / \
|
|
// | V - z_hi*U |
|
|
|
|
// = arctan(z_hi) + acrtan| -------------- |
|
|
// | U + V*z_hi |
|
|
// \ /
|
|
//
|
|
// = arctan(z_hi) + acrtan( V' / U' )
|
|
//
|
|
//
|
|
// where
|
|
//
|
|
// V' = V - U*z_hi; U' = U + V*z_hi.
|
|
//
|
|
// Let
|
|
//
|
|
// w_hi + w_lo = V'/U' to extra precision and
|
|
// w = V'/U' to working precision
|
|
//
|
|
// then we can approximate arctan(V'/U') by
|
|
//
|
|
// arctan(V'/U') = w_hi + w_lo
|
|
// + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))
|
|
//
|
|
// = w_hi + w_lo + poly
|
|
//
|
|
// Finally, arctan(z_hi) is calculated beforehand and stored in a table
|
|
// as Tbl_hi, Tbl_lo. Thus,
|
|
//
|
|
// (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))
|
|
//
|
|
// This completes the mathematical description.
|
|
//
|
|
//
|
|
// Algorithm
|
|
// -------------
|
|
//
|
|
// Step 0. Check for unsupported format.
|
|
//
|
|
// If
|
|
// ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR
|
|
// ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )
|
|
//
|
|
// then one of the arguments is unsupported. Generate an
|
|
// invalid and return qNaN.
|
|
//
|
|
// Step 1. Initialize
|
|
//
|
|
// Normalize Arg_X and Arg_Y and set the following
|
|
//
|
|
// sign_X := sign_bit(Arg_X)
|
|
// s_Y := (sign_bit(Arg_Y)==0? 1.0 : -1.0)
|
|
// swap := (|Arg_X| >= |Arg_Y|? 0 : 1 )
|
|
// U := max( |Arg_X|, |Arg_Y| )
|
|
// V := min( |Arg_X|, |Arg_Y| )
|
|
//
|
|
// execute: frcpa E, pred, V, U
|
|
// If pred is 0, go to Step 5 for special cases handling.
|
|
//
|
|
// Step 2. Decide on branch.
|
|
//
|
|
// Q := E * V
|
|
// If Q < 2^(-3) go to Step 4 for simple polynomial case.
|
|
//
|
|
// Step 3. Table-driven algorithm.
|
|
//
|
|
// Q is represented as
|
|
//
|
|
// 2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3
|
|
//
|
|
// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// (note that there are 49 possible values of z_hi).
|
|
//
|
|
// ...We now calculate V' and U'. While V' is representable
|
|
// ...as a 64-bit number because of cancellation, U' is
|
|
// ...not in general a 64-bit number. Obtaining U' accurately
|
|
// ...requires two working precision numbers
|
|
//
|
|
// U_prime_hi := U + V * z_hi ...WP approx. to U'
|
|
// U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order
|
|
// V_prime := V - U * z_hi ...this is exact
|
|
//
|
|
// C_hi := frcpa (1.0, U_prime_hi) ...C_hi approx 1/U'_hi
|
|
//
|
|
// loop 3 times
|
|
// C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)
|
|
//
|
|
// ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits
|
|
//
|
|
// w_hi := V_prime * C_hi ...w_hi is V_prime/U_prime to
|
|
// ...roughly working precision
|
|
//
|
|
// ...note that we want w_hi + w_lo to approximate
|
|
// ...V_prime/(U_prime_hi + U_prime_lo) to extra precision
|
|
// ...but for now, w_hi is good enough for the polynomial
|
|
// ...calculation.
|
|
//
|
|
// wsq := w_hi*w_hi
|
|
// poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))
|
|
//
|
|
// Fetch
|
|
// (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)
|
|
// ...Tbl_hi is a double-precision number
|
|
// ...Tbl_lo is a single-precision number
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...as discussed previous. Again; the implementation can
|
|
// ...chose to fetch P_hi and P_lo from a table indexed by
|
|
// ...(sign_X, swap).
|
|
// ...P_hi is a double-precision number;
|
|
// ...P_lo is a single-precision number.
|
|
//
|
|
// ...calculate w_lo so that w_hi + w_lo is V'/U' accurately
|
|
// w_lo := ((V_prime - w_hi*U_prime_hi) -
|
|
// w_hi*U_prime_lo) * C_hi ...observe order
|
|
//
|
|
//
|
|
// ...Ready to deliver arctan(V'/U') as A_hi, A_lo
|
|
// A_hi := Tbl_hi
|
|
// A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...this is exact because
|
|
// ...both P_hi and Tbl_hi
|
|
// ...are double-precision
|
|
// ...and |Tbl_hi| > 2^(-4)
|
|
// ...P_hi is either 0 or
|
|
// ...between (1,4)
|
|
//
|
|
// Res_lo := sigma*A_lo + P_lo
|
|
//
|
|
// Return Res_hi + s_Y*Res_lo in user-defined rounding control
|
|
//
|
|
// Step 4. Simple polynomial case.
|
|
//
|
|
// ...E and Q are inherited from Step 2.
|
|
//
|
|
// A_hi := Q ...Q is inherited from Step 2 Q approx V/U
|
|
//
|
|
// loop 3 times
|
|
// E := E + E2(1.0 - E*U1
|
|
// ...at this point E approximates 1/U to roughly working precision
|
|
//
|
|
// z := V * E ...z approximates V/U to roughly working precision
|
|
// zsq := z * z
|
|
// z4 := zsq * zsq; z8 := z4 * z4
|
|
//
|
|
// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
// poly := poly1 + z8*poly2
|
|
//
|
|
// z_lo := (V - A_hi*U)*E
|
|
//
|
|
// A_lo := z*poly + z_lo
|
|
// ...A_hi, A_lo approximate arctan(V/U) accurately
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...one can store the M(sign_X,swap) as single precision
|
|
// ...values
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...need to compute
|
|
// ...P_hi + sigma*A_hi
|
|
// ...exactly
|
|
//
|
|
// tmp := (P_hi - Res_hi) + sigma*A_hi
|
|
//
|
|
// Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp
|
|
//
|
|
// Return Res_hi + Res_lo in user-defined rounding control
|
|
//
|
|
// Step 5. Special Cases
|
|
//
|
|
// These are detected early in the function by fclass instructions.
|
|
//
|
|
// We are in one of those special cases when X or Y is 0,+-inf or NaN
|
|
//
|
|
// If one of X and Y is NaN, return X+Y (which will generate
|
|
// invalid in case one is a signaling NaN). Otherwise,
|
|
// return the Result as described in the table
|
|
//
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 |
|
|
// non-zero| sign(Y)*0: | | | N/A
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
|
|
ArgY_orig = f8
|
|
Result = f8
|
|
FR_RESULT = f8
|
|
ArgX_orig = f9
|
|
ArgX = f10
|
|
FR_X = f10
|
|
ArgY = f11
|
|
FR_Y = f11
|
|
s_Y = f12
|
|
U = f13
|
|
V = f14
|
|
E = f15
|
|
Q = f32
|
|
z_hi = f33
|
|
U_prime_hi = f34
|
|
U_prime_lo = f35
|
|
V_prime = f36
|
|
C_hi = f37
|
|
w_hi = f38
|
|
w_lo = f39
|
|
wsq = f40
|
|
poly = f41
|
|
Tbl_hi = f42
|
|
Tbl_lo = f43
|
|
P_hi = f44
|
|
P_lo = f45
|
|
A_hi = f46
|
|
A_lo = f47
|
|
sigma = f48
|
|
Res_hi = f49
|
|
Res_lo = f50
|
|
Z = f52
|
|
zsq = f53
|
|
z4 = f54
|
|
z8 = f54
|
|
poly1 = f55
|
|
poly2 = f56
|
|
z_lo = f57
|
|
tmp = f58
|
|
P_1 = f59
|
|
Q_1 = f60
|
|
P_2 = f61
|
|
Q_2 = f62
|
|
P_3 = f63
|
|
Q_3 = f64
|
|
P_4 = f65
|
|
Q_4 = f66
|
|
P_5 = f67
|
|
P_6 = f68
|
|
P_7 = f69
|
|
P_8 = f70
|
|
U_hold = f71
|
|
TWO_TO_NEG3 = f72
|
|
C_hi_hold = f73
|
|
E_hold = f74
|
|
M = f75
|
|
ArgX_abs = f76
|
|
ArgY_abs = f77
|
|
Result_lo = f78
|
|
A_temp = f79
|
|
FR_temp = f80
|
|
Xsq = f81
|
|
Ysq = f82
|
|
tmp_small = f83
|
|
|
|
GR_SAVE_PFS = r33
|
|
GR_SAVE_B0 = r34
|
|
GR_SAVE_GP = r35
|
|
sign_X = r36
|
|
sign_Y = r37
|
|
swap = r38
|
|
table_ptr1 = r39
|
|
table_ptr2 = r40
|
|
k = r41
|
|
lookup = r42
|
|
exp_ArgX = r43
|
|
exp_ArgY = r44
|
|
exponent_Q = r45
|
|
significand_Q = r46
|
|
special = r47
|
|
sp_exp_Q = r48
|
|
sp_exp_4sig_Q = r49
|
|
table_base = r50
|
|
int_temp = r51
|
|
|
|
GR_Parameter_X = r49
|
|
GR_Parameter_Y = r50
|
|
GR_Parameter_RESULT = r51
|
|
GR_Parameter_TAG = r52
|
|
GR_temp = r52
|
|
|
|
RODATA
|
|
.align 16
|
|
|
|
LOCAL_OBJECT_START(Constants_atan)
|
|
// double pi/2
|
|
data8 0x3FF921FB54442D18
|
|
// single lo_pi/2, two**(-3)
|
|
data4 0x248D3132, 0x3E000000
|
|
data8 0xAAAAAAAAAAAAAAA3, 0xBFFD // P_1
|
|
data8 0xCCCCCCCCCCCC54B2, 0x3FFC // P_2
|
|
data8 0x9249249247E4D0C2, 0xBFFC // P_3
|
|
data8 0xE38E38E058870889, 0x3FFB // P_4
|
|
data8 0xBA2E895B290149F8, 0xBFFB // P_5
|
|
data8 0x9D88E6D4250F733D, 0x3FFB // P_6
|
|
data8 0x884E51FFFB8745A0, 0xBFFB // P_7
|
|
data8 0xE1C7412B394396BD, 0x3FFA // P_8
|
|
data8 0xAAAAAAAAAAAAA52F, 0xBFFD // Q_1
|
|
data8 0xCCCCCCCCC75B60D3, 0x3FFC // Q_2
|
|
data8 0x924923AD011F1940, 0xBFFC // Q_3
|
|
data8 0xE36F716D2A5F89BD, 0x3FFB // Q_4
|
|
//
|
|
// Entries Tbl_hi (double precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
// Entries Tbl_lo (single precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
//
|
|
data8 0x3FE9A000A935BD8E
|
|
data4 0x23ACA08F, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-1)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FDE77EB7F175A34
|
|
data4 0x238729EE, 0x00000000
|
|
data8 0x3FE0039C73C1A40B
|
|
data4 0x249334DB, 0x00000000
|
|
data8 0x3FE0C6145B5B43DA
|
|
data4 0x22CBA7D1, 0x00000000
|
|
data8 0x3FE1835A88BE7C13
|
|
data4 0x246310E7, 0x00000000
|
|
data8 0x3FE23B71E2CC9E6A
|
|
data4 0x236210E5, 0x00000000
|
|
data8 0x3FE2EE628406CBCA
|
|
data4 0x2462EAF5, 0x00000000
|
|
data8 0x3FE39C391CD41719
|
|
data4 0x24B73EF3, 0x00000000
|
|
data8 0x3FE445065B795B55
|
|
data4 0x24C11260, 0x00000000
|
|
data8 0x3FE4E8DE5BB6EC04
|
|
data4 0x242519EE, 0x00000000
|
|
data8 0x3FE587D81F732FBA
|
|
data4 0x24D4346C, 0x00000000
|
|
data8 0x3FE6220D115D7B8D
|
|
data4 0x24ED487B, 0x00000000
|
|
data8 0x3FE6B798920B3D98
|
|
data4 0x2495FF1E, 0x00000000
|
|
data8 0x3FE748978FBA8E0F
|
|
data4 0x223D9531, 0x00000000
|
|
data8 0x3FE7D528289FA093
|
|
data4 0x242B0411, 0x00000000
|
|
data8 0x3FE85D69576CC2C5
|
|
data4 0x2335B374, 0x00000000
|
|
data8 0x3FE8E17AA99CC05D
|
|
data4 0x24C27CFB, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-2)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FD025FA510665B5
|
|
data4 0x24263482, 0x00000000
|
|
data8 0x3FD1151A362431C9
|
|
data4 0x242C8DC9, 0x00000000
|
|
data8 0x3FD2025567E47C95
|
|
data4 0x245CF9BA, 0x00000000
|
|
data8 0x3FD2ED987A823CFE
|
|
data4 0x235C892C, 0x00000000
|
|
data8 0x3FD3D6D129271134
|
|
data4 0x2389BE52, 0x00000000
|
|
data8 0x3FD4BDEE586890E6
|
|
data4 0x24436471, 0x00000000
|
|
data8 0x3FD5A2E0175E0F4E
|
|
data4 0x2389DBD4, 0x00000000
|
|
data8 0x3FD685979F5FA6FD
|
|
data4 0x2476D43F, 0x00000000
|
|
data8 0x3FD7660752817501
|
|
data4 0x24711774, 0x00000000
|
|
data8 0x3FD84422B8DF95D7
|
|
data4 0x23EBB501, 0x00000000
|
|
data8 0x3FD91FDE7CD0C662
|
|
data4 0x23883A0C, 0x00000000
|
|
data8 0x3FD9F93066168001
|
|
data4 0x240DF63F, 0x00000000
|
|
data8 0x3FDAD00F5422058B
|
|
data4 0x23FE261A, 0x00000000
|
|
data8 0x3FDBA473378624A5
|
|
data4 0x23A8CD0E, 0x00000000
|
|
data8 0x3FDC76550AAD71F8
|
|
data4 0x2422D1D0, 0x00000000
|
|
data8 0x3FDD45AEC9EC862B
|
|
data4 0x2344A109, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-3)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FC068D584212B3D
|
|
data4 0x239874B6, 0x00000000
|
|
data8 0x3FC1646541060850
|
|
data4 0x2335E774, 0x00000000
|
|
data8 0x3FC25F6E171A535C
|
|
data4 0x233E36BE, 0x00000000
|
|
data8 0x3FC359E8EDEB99A3
|
|
data4 0x239680A3, 0x00000000
|
|
data8 0x3FC453CEC6092A9E
|
|
data4 0x230FB29E, 0x00000000
|
|
data8 0x3FC54D18BA11570A
|
|
data4 0x230C1418, 0x00000000
|
|
data8 0x3FC645BFFFB3AA73
|
|
data4 0x23F0564A, 0x00000000
|
|
data8 0x3FC73DBDE8A7D201
|
|
data4 0x23D4A5E1, 0x00000000
|
|
data8 0x3FC8350BE398EBC7
|
|
data4 0x23D4ADDA, 0x00000000
|
|
data8 0x3FC92BA37D050271
|
|
data4 0x23BCB085, 0x00000000
|
|
data8 0x3FCA217E601081A5
|
|
data4 0x23BC841D, 0x00000000
|
|
data8 0x3FCB1696574D780B
|
|
data4 0x23CF4A8E, 0x00000000
|
|
data8 0x3FCC0AE54D768466
|
|
data4 0x23BECC90, 0x00000000
|
|
data8 0x3FCCFE654E1D5395
|
|
data4 0x2323DCD2, 0x00000000
|
|
data8 0x3FCDF110864C9D9D
|
|
data4 0x23F53F3A, 0x00000000
|
|
data8 0x3FCEE2E1451D980C
|
|
data4 0x23CCB11F, 0x00000000
|
|
//
|
|
data8 0x400921FB54442D18, 0x3CA1A62633145C07 // PI two doubles
|
|
data8 0x3FF921FB54442D18, 0x3C91A62633145C07 // PI_by_2 two dbles
|
|
data8 0x3FE921FB54442D18, 0x3C81A62633145C07 // PI_by_4 two dbles
|
|
data8 0x4002D97C7F3321D2, 0x3C9A79394C9E8A0A // 3PI_by_4 two dbles
|
|
LOCAL_OBJECT_END(Constants_atan)
|
|
|
|
|
|
.section .text
|
|
GLOBAL_IEEE754_ENTRY(atanl)
|
|
|
|
// Use common code with atan2l after setting x=1.0
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 17, 4, 0
|
|
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
|
|
fma.s1 Xsq = f1, f1, f0 // Form x*x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 table_ptr1 = [table_ptr1] // Get table pointer
|
|
fnorm.s1 ArgY = ArgY_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX = f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_X = f1 // Get signexp of x
|
|
fmerge.s ArgX_abs = f0, f1 // Form |x|
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX_orig = f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_Y = ArgY_orig // Get signexp of y
|
|
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
|
|
mov table_base = table_ptr1 // Save base pointer to tables
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
|
|
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 M = f1, f1, f0 // Set M = 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan (IA unsupporteds).
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p0,p12 = f1, 0x1FF // Test x unsupported
|
|
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// U = max(ArgX_abs,ArgY_abs)
|
|
// V = min(ArgX_abs,ArgY_abs)
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
|
|
br.cond.sptk ATANL_COMMON // Branch to common code
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(atanl)
|
|
|
|
GLOBAL_IEEE754_ENTRY(atan2l)
|
|
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 17, 4, 0
|
|
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
|
|
fma.s1 Xsq = ArgX_orig, ArgX_orig, f0 // Form x*x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 table_ptr1 = [table_ptr1] // Get table pointer
|
|
fnorm.s1 ArgY = ArgY_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX = ArgX_orig
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_X = ArgX_orig // Get signexp of x
|
|
fmerge.s ArgX_abs = f0, ArgX_orig // Form |x|
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_Y = ArgY_orig // Get signexp of y
|
|
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
|
|
mov table_base = table_ptr1 // Save base pointer to tables
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
|
|
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
|
|
fclass.m p9,p0 = ArgX_orig, 0x1e7 // Test x natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 M = f1, f1, f0 // Set M = 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan (IA unsupporteds).
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p0,p12 = ArgX_orig, 0x1FF // Test x unsupported
|
|
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// U = max(ArgX_abs,ArgY_abs)
|
|
// V = min(ArgX_abs,ArgY_abs)
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
|
|
(p9) br.cond.spnt ATANL_X_SPECIAL // Branch if x natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// Now common code for atanl and atan2l
|
|
ATANL_COMMON:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p0,p13 = ArgY_orig, 0x1FF // Test y unsupported
|
|
shr sign_X = sign_X, 17 // Get sign bit of x
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U = ArgY_abs, f1, f0 // Set U assuming |x| < |y|
|
|
adds table_ptr1 = 176, table_ptr1 // Point to Q4
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add swap = r0, r0 // Set swap=0 if |x| >= |y|
|
|
(p6) frcpa.s1 E, p0 = ArgY_abs, ArgX_abs // Compute E if |x| >= |y|
|
|
shr sign_Y = sign_Y, 17 // Get sign bit of y
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fma.s1 V = ArgY_abs, f1, f0 // Set V if |x| >= |y|
|
|
(p12) br.cond.spnt ATANL_UNSUPPORTED // Branch if x unsupported
|
|
}
|
|
;;
|
|
|
|
// Set p8 if y >=0
|
|
// Set p9 if y < 0
|
|
// Set p10 if |x| >= |y| and x >=0
|
|
// Set p11 if |x| >= |y| and x < 0
|
|
{ .mfi
|
|
cmp.eq p8, p9 = 0, sign_Y // Test for y >= 0
|
|
(p7) frcpa.s1 E, p0 = ArgX_abs, ArgY_abs // Compute E if |x| < |y|
|
|
(p7) add swap = 1, r0 // Set swap=1 if |x| < |y|
|
|
}
|
|
{ .mfb
|
|
(p6) cmp.eq.unc p10, p11 = 0, sign_X // If |x| >= |y|, test for x >= 0
|
|
(p6) fma.s1 U = ArgX_abs, f1, f0 // Set U if |x| >= |y|
|
|
(p13) br.cond.spnt ATANL_UNSUPPORTED // Branch if y unsupported
|
|
}
|
|
;;
|
|
|
|
//
|
|
// if p8, s_Y = 1.0
|
|
// if p9, s_Y = -1.0
|
|
//
|
|
.pred.rel "mutex",p8,p9
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fadd.s1 s_Y = f0, f1 // If y >= 0 set s_Y = 1.0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 s_Y = f0, f1 // If y < 0 set s_Y = -1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p10,p11
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fsub.s1 M = M, f1 // If |x| >= |y| and x >=0, set M=0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 M = M, f1 // If |x| >= |y| and x < 0, set M=2.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
|
|
nop.i 999
|
|
}
|
|
// *************************************************
|
|
// ********************* STEP2 *********************
|
|
// *************************************************
|
|
//
|
|
// Q = E * V
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 Q = E, V
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (1) if POLY path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Create a single precision representation of the signexp of Q with the
|
|
// 4 most significant bits of the significand followed by a 1 and then 18 0's
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 P_hi = M, P_hi
|
|
dep.z special = 0x1, 18, 1 // Form 0x0000000000040000
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 P_lo = M, P_lo
|
|
add table_ptr2 = 32, table_ptr1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 A_temp = Q, f1, f0 // Set A_temp if POLY path
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 E = E, E_hold, E // E = E + E*E_hold (1) if POLY path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Is Q < 2**(-3)?
|
|
// swap = xor(swap,sign_X)
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s1 p9, p0 = Q, TWO_TO_NEG3 // Test Q < 2^-3
|
|
xor swap = sign_X, swap
|
|
}
|
|
;;
|
|
|
|
// P_hi = s_Y * P_hi
|
|
{ .mmf
|
|
getf.exp exponent_Q = Q // Get signexp of Q
|
|
cmp.eq.unc p7, p6 = 0x00000, swap
|
|
fmpy.s1 P_hi = s_Y, P_hi
|
|
}
|
|
;;
|
|
|
|
//
|
|
// if (PR_1) sigma = -1.0
|
|
// if (PR_2) sigma = 1.0
|
|
//
|
|
{ .mfi
|
|
getf.sig significand_Q = Q // Get significand of Q
|
|
(p6) fsub.s1 sigma = f0, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
(p9) add table_ptr1 = 128, table_base // Point to P8 if POLY path
|
|
(p7) fadd.s1 sigma = f0, f1
|
|
(p9) br.cond.spnt ATANL_POLY // Branch to POLY if 0 < Q < 2^-3
|
|
}
|
|
;;
|
|
|
|
//
|
|
// *************************************************
|
|
// ******************** STEP3 **********************
|
|
// *************************************************
|
|
//
|
|
// lookup = b_1 b_2 b_3 B_4
|
|
//
|
|
{ .mmi
|
|
nop.m 999
|
|
nop.m 999
|
|
andcm k = 0x0003, exponent_Q // k=0,1,2,3 for exp_Q=0,-1,-2,-3
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Generate sign_exp_Q b_1 b_2 b_3 b_4 1 0 0 0 ... 0 in single precision
|
|
// representation. Note sign of Q is always 0.
|
|
//
|
|
{ .mfi
|
|
cmp.eq p8, p9 = 0x0000, k // Test k=0
|
|
nop.f 999
|
|
extr.u lookup = significand_Q, 59, 4 // Extract b_1 b_2 b_3 b_4 for index
|
|
}
|
|
{ .mfi
|
|
sub sp_exp_Q = 0x7f, k // Form single prec biased exp of Q
|
|
nop.f 999
|
|
sub k = k, r0, 1 // Decrement k
|
|
}
|
|
;;
|
|
|
|
// Form pointer to B index table
|
|
{ .mfi
|
|
ldfe Q_4 = [table_ptr1], -16 // Load Q_4
|
|
nop.f 999
|
|
(p9) shl k = k, 8 // k = 0, 256, or 512
|
|
}
|
|
{ .mfi
|
|
(p9) shladd table_ptr2 = lookup, 4, table_ptr2
|
|
nop.f 999
|
|
shladd sp_exp_4sig_Q = sp_exp_Q, 4, lookup // Shift and add in 4 high bits
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p8) add table_ptr2 = -16, table_ptr2 // Pointer if original k was 0
|
|
(p9) add table_ptr2 = k, table_ptr2 // Pointer if k was 1, 2, 3
|
|
dep special = sp_exp_4sig_Q, special, 19, 13 // Form z_hi as single prec
|
|
}
|
|
;;
|
|
|
|
// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
|
|
{ .mmi
|
|
ldfd Tbl_hi = [table_ptr2], 8 // Load Tbl_hi from index table
|
|
;;
|
|
setf.s z_hi = special // Form z_hi
|
|
nop.i 999
|
|
}
|
|
{ .mmi
|
|
ldfs Tbl_lo = [table_ptr2], 8 // Load Tbl_lo from index table
|
|
;;
|
|
ldfe Q_3 = [table_ptr1], -16 // Load Q_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe Q_2 = [table_ptr1], -16 // Load Q_2
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfe Q_1 = [table_ptr1], -16 // Load Q_1
|
|
nop.m 999
|
|
nop.f 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U_prime_hi = V, z_hi, U // U_prime_hi = U + V * z_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 V_prime = U, z_hi, V // V_prime = V - U * z_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
mov A_hi = Tbl_hi // Start with A_hi = Tbl_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 U_hold = U, U_prime_hi // U_hold = U - U_prime_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
frcpa.s1 C_hi, p0 = f1, U_prime_hi // C_hi = frcpa(1,U_prime_hi)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U_prime_lo = z_hi, V, U_hold // U_prime_lo = U_hold + V * z_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (1)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (1)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (2)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (3)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (3)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w_hi = V_prime, C_hi // w_hi = V_prime * C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 wsq = w_hi, w_hi // wsq = w_hi * w_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 w_lo = w_hi, U_prime_hi, V_prime // w_lo = V_prime-w_hi*U_prime_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, Q_4, Q_3 // poly = Q_3 + wsq * Q_4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 w_lo = w_hi, U_prime_lo, w_lo // w_lo = w_lo - w_hi * U_prime_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, poly, Q_2 // poly = Q_2 + wsq * poly
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w_lo = C_hi, w_lo // w_lo = = w_lo * C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, poly, Q_1 // poly = Q_1 + wsq * poly
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = Tbl_lo, w_lo // A_lo = Tbl_lo + w_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 Q_1 = Q_1, Q_1 // Dummy operation to raise inexact
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly = wsq, poly // poly = wsq * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly = w_hi, poly // poly = w_hi * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = A_lo, poly // A_lo = A_lo + poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = A_lo, w_hi // A_lo = A_lo + w_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_lo = sigma, A_lo, P_lo // Res_lo = P_lo + sigma * A_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 Result = Res_lo, s_Y, Res_hi
|
|
br.ret.sptk b0 // Exit table path 2^-3 <= V/U < 1
|
|
}
|
|
;;
|
|
|
|
|
|
ATANL_POLY:
|
|
// Here if 0 < V/U < 2^-3
|
|
//
|
|
// ***********************************************
|
|
// ******************** STEP4 ********************
|
|
// ***********************************************
|
|
|
|
//
|
|
// Following:
|
|
// Iterate 3 times E = E + E*(1.0 - E*U)
|
|
// Also load P_8, P_7, P_6, P_5, P_4
|
|
//
|
|
{ .mfi
|
|
ldfe P_8 = [table_ptr1], -16 // Load P_8
|
|
fnma.s1 z_lo = A_temp, U, V // z_lo = V - A_temp * U
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_7 = [table_ptr1], -16 // Load P_7
|
|
;;
|
|
ldfe P_6 = [table_ptr1], -16 // Load P_6
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P_5 = [table_ptr1], -16 // Load P_5
|
|
fma.s1 E = E, E_hold, E // E = E + E_hold*E (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_4 = [table_ptr1], -16 // Load P_4
|
|
;;
|
|
ldfe P_3 = [table_ptr1], -16 // Load P_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P_2 = [table_ptr1], -16 // Load P_2
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (3)
|
|
nop.i 999
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
movl int_temp = 0x24005 // Signexp for small neg number
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfe P_1 = [table_ptr1], -16 // Load P_1
|
|
setf.exp tmp_small = int_temp // Form small neg number
|
|
fma.s1 E = E, E_hold, E // E = E + E_hold*E (3)
|
|
}
|
|
;;
|
|
|
|
//
|
|
//
|
|
// At this point E approximates 1/U to roughly working precision
|
|
// Z = V*E approximates V/U
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 Z = V, E // Z = V * E
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z_lo = z_lo, E // z_lo = z_lo * E
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Now what we want to do is
|
|
// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
//
|
|
// Fixup added to force inexact later -
|
|
// A_hi = A_temp + z_lo
|
|
// z_lo = (A_temp - A_hi) + z_lo
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 zsq = Z, Z // zsq = Z * Z
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_hi = A_temp, z_lo // A_hi = A_temp + z_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, P_8, P_7 // poly1 = P_7 + zsq * P_8
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly2 = zsq, P_3, P_2 // poly2 = P_2 + zsq * P_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z4 = zsq, zsq // z4 = zsq * zsq
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 A_temp = A_temp, A_hi // A_temp = A_temp - A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s tmp = A_hi, A_hi // Copy tmp = A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_6 // poly1 = P_6 + zsq * poly1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly2 = zsq, poly2, P_1 // poly2 = P_2 + zsq * poly2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z8 = z4, z4 // z8 = z4 * z4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 z_lo = A_temp, z_lo // z_lo = (A_temp - A_hi) + z_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_5 // poly1 = P_5 + zsq * poly1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly2 = poly2, zsq // poly2 = zsq * poly2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Create small GR double in case need to raise underflow
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_4 // poly1 = P_4 + zsq * poly1
|
|
dep GR_temp = -1,r0,0,53
|
|
}
|
|
;;
|
|
|
|
// Create small double in case need to raise underflow
|
|
{ .mfi
|
|
setf.d FR_temp = GR_temp
|
|
fma.s1 poly = z8, poly1, poly2 // poly = poly2 + z8 * poly1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 A_lo = Z, poly, z_lo // A_lo = z_lo + Z * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_hi = tmp, A_lo // A_hi = tmp + A_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 tmp = tmp, A_hi // tmp = tmp - A_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = tmp, A_lo // A_lo = tmp + A_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 tmp = P_hi, Res_hi // tmp = P_hi - Res_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Test if A_lo is zero
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6,p0 = A_lo, 0x007 // Test A_lo = 0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) mov A_lo = tmp_small // If A_lo zero, make very small
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 tmp = A_hi, sigma, tmp // tmp = sigma * A_hi + tmp
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sigma = A_lo, sigma, P_lo // sigma = A_lo * sigma + P_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_lo = s_Y, sigma, tmp // Res_lo = s_Y * sigma + tmp
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Test if Res_lo is denormal
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p14, p15 = Res_lo, 0x0b
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Compute Result = Res_lo + Res_hi. Use s3 if Res_lo is denormal.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fadd.s3 Result = Res_lo, Res_hi // Result for Res_lo denormal
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fadd.s0 Result = Res_lo, Res_hi // Result for Res_lo normal
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// If Res_lo is denormal test if Result equals zero
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fclass.m.unc p14, p0 = Result, 0x07
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// If Res_lo is denormal and Result equals zero, raise inexact, underflow
|
|
// by squaring small double
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
(p14) fmpy.d.s0 FR_temp = FR_temp, FR_temp
|
|
br.ret.sptk b0 // Exit POLY path, 0 < Q < 2^-3
|
|
}
|
|
;;
|
|
|
|
|
|
ATANL_UNSUPPORTED:
|
|
{ .mfb
|
|
nop.m 999
|
|
fmpy.s0 Result = ArgX,ArgY
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// Here if y natval, nan, inf, zero
|
|
ATANL_Y_SPECIAL:
|
|
// Here if x natval, nan, inf, zero
|
|
ATANL_X_SPECIAL:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p13,p12 = ArgY_orig, 0x0c3 // Test y nan
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p15,p14 = ArgY_orig, 0x103 // Test y natval
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fclass.m p13,p0 = ArgX_orig, 0x0c3 // Test x nan
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fclass.m p15,p0 = ArgX_orig, 0x103 // Test x natval
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p13) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result nan if x or y nan
|
|
(p13) br.ret.spnt b0 // Exit if x or y nan
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result natval if x or y natval
|
|
(p15) br.ret.spnt b0 // Exit if x or y natval
|
|
}
|
|
;;
|
|
|
|
|
|
// Here if x or y inf or zero
|
|
ATANL_SPECIAL_HANDLING:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6, p7 = ArgY_orig, 0x007 // Test y zero
|
|
mov special = 992 // Offset to table
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
add table_ptr1 = table_base, special // Point to 3pi/4
|
|
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
|
|
(p7) br.cond.spnt ATANL_ArgY_Not_ZERO // Branch if y not zero
|
|
}
|
|
;;
|
|
|
|
// Here if y zero
|
|
{ .mmf
|
|
ldfd Result = [table_ptr1], 8 // Get pi high
|
|
nop.m 999
|
|
fclass.m p14, p0 = ArgX, 0x035 // Test for x>=+0
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
nop.m 999
|
|
ldfd Result_lo = [table_ptr1], -8 // Get pi lo
|
|
fclass.m p15, p0 = ArgX, 0x036 // Test for x<=-0
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Return sign_Y * 0 when ArgX > +0
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result = ArgY, f0 // If x>=+0, y=0, hi sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p13, p0 = ArgX, 0x007 // Test for x=0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result_lo = ArgY, f0 // If x>=+0, y=0, lo sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p13) mov GR_Parameter_TAG = 36 // Error tag for x=0, y=0
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Return sign_Y * pi when ArgX < -0
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fmerge.s Result = ArgY, Result // If x<0, y=0, hi=sgn(y)*pi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fmerge.s Result_lo = ArgY, Result_lo // If x<0, y=0, lo=sgn(y)*pi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Call error support function for atan(0,0)
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fadd.s0 Result = Result, Result_lo
|
|
(p13) br.cond.spnt __libm_error_region // Branch if atan(0,0)
|
|
}
|
|
;;
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
br.ret.sptk b0 // Exit for y=0, x not 0
|
|
}
|
|
;;
|
|
|
|
// Here if y not zero
|
|
ATANL_ArgY_Not_ZERO:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p0, p10 = ArgY, 0x023 // Test y inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p6, p0 = ArgX, 0x017 // Test for 0 <= |x| < inf
|
|
(p10) br.cond.spnt ATANL_ArgY_Not_INF // Branch if 0 < |y| < inf
|
|
}
|
|
;;
|
|
|
|
// Here if y=inf
|
|
//
|
|
// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
|
|
// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
|
|
// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
|
|
// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
|
|
// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
|
|
// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p7, p0 = ArgX, 0x021 // Test for x=+inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2, if x finite
|
|
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p7) add table_ptr1 = 32, table_ptr1 // Point to pi/4 if x=+inf
|
|
;;
|
|
(p8) add table_ptr1 = 48, table_ptr1 // Point to 3pi/4 if x=-inf
|
|
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfd Result = [table_ptr1], 8 // Load pi/2, pi/4, or 3pi/4 hi
|
|
;;
|
|
ldfd Result_lo = [table_ptr1], -8 // Load pi/2, pi/4, or 3pi/4 lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fadd.s0 Result = Result, Result_lo // Compute complete result
|
|
br.ret.sptk b0 // Exit for y=inf
|
|
}
|
|
;;
|
|
|
|
// Here if y not INF, and x=0 or INF
|
|
ATANL_ArgY_Not_INF:
|
|
//
|
|
// Return +PI/2 when ArgY NOT Inf, ArgY > 0 and ArgX = +/-0
|
|
// Return -PI/2 when ArgY NOT Inf, ArgY < 0 and ArgX = +/-0
|
|
// Return +0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
|
|
// Return -0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
|
|
// Return +PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
|
|
// Return -PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p7, p9 = ArgX, 0x021 // Test for x=+inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6, p0 = ArgX, 0x007 // Test for x=0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2
|
|
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p7,p9
|
|
{ .mfi
|
|
(p9) ldfd Result = [table_ptr1], 8 // Load pi or pi/2 hi
|
|
(p7) fmerge.s Result = ArgY, f0 // If y not inf, x=+inf, sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) ldfd Result_lo = [table_ptr1], -8 // Load pi or pi/2 lo
|
|
(p7) fnorm.s0 Result = Result // If y not inf, x=+inf normalize
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p9) fadd.s0 Result = Result, Result_lo // Compute complete result
|
|
br.ret.spnt b0 // Exit for y not inf, x=0,inf
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(atan2l)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|