glibc/sysdeps/m68k/fpu/__math.h
1996-09-20 01:57:51 +00:00

314 lines
12 KiB
C

/* Copyright (C) 1991, 92, 93, 94, 96 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
#ifdef __GNUC__
#include <sys/cdefs.h>
#ifdef __NO_M81_MATH_INLINES
/* This is used when defining the functions themselves. Define them with
__ names, and with `static inline' instead of `extern inline' so the
bodies will always be used, never an external function call. */
#define __m81_u(x) __CONCAT(__,x)
#define __m81_inline static __inline
#else
#define __m81_u(x) x
#define __m81_inline extern __inline
#define __M81_MATH_INLINES 1
#endif
/* Define a const math function. */
#define __m81_defun(rettype, func, args) \
__m81_inline rettype \
__m81_u(func) args __attribute__((__const__)); \
__m81_inline rettype \
__m81_u(func) args
/* Define the three variants of a math function that has a direct
implementation in the m68k fpu. FUNC is the name for C (which will be
suffixed with f and l for the float and long double version, resp). OP
is the name of the fpu operation (without leading f). */
#define __inline_mathop(func, op) \
__m81_defun (double, func, (double __mathop_x)) \
{ \
double __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
} \
__m81_defun (float, func##f, (float __mathop_x)) \
{ \
float __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
} \
__m81_defun (long double, func##l, (long double __mathop_x)) \
{ \
long double __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
}
/* ieee style elementary functions */
__inline_mathop(__ieee754_acos, acos)
__inline_mathop(__ieee754_asin, asin)
__inline_mathop(__ieee754_cosh, cosh)
__inline_mathop(__ieee754_sinh, sinh)
__inline_mathop(__ieee754_exp, etox)
__inline_mathop(__ieee754_log10, log10)
__inline_mathop(__ieee754_log, logn)
__inline_mathop(__ieee754_sqrt, sqrt)
__inline_mathop(__ieee754_atanh, atanh)
__inline_mathop(__atan, atan)
__inline_mathop(__cos, cos)
__inline_mathop(__sin, sin)
__inline_mathop(__tan, tan)
__inline_mathop(__tanh, tanh)
__inline_mathop(__fabs, abs)
__inline_mathop(__sqrt, sqrt)
__inline_mathop(__rint, int)
__inline_mathop(__expm1, etoxm1)
__inline_mathop(__log1p, lognp1)
__inline_mathop(__logb, log2)
__inline_mathop(__significand, getman)
/* This macro contains the definition for the rest of the inline
functions, using __FLOAT_TYPE as the domain type and __S as the suffix
for the function names. */
#define __inline_functions(__float_type, __s) \
__m81_defun (__float_type, \
__ieee754_remainder##__s, (__float_type __x, __float_type __y)) \
{ \
__float_type __result; \
__asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \
return __result; \
} \
\
__m81_defun (__float_type, \
__ieee754_fmod##__s, (__float_type __x, __float_type __y)) \
{ \
__float_type __result; \
__asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \
return __result; \
} \
\
__m81_defun (__float_type, \
__ieee754_atan2##__s, (__float_type __y, __float_type __x)) \
{ \
__float_type __pi, __pi_2; \
\
__asm ("fmovecr%.x %#0, %0" : "=f" (__pi)); \
__asm ("fscale%.w %#-1, %0" : "=f" (__pi_2) : "0" (__pi)); \
if (__x > 0) \
{ \
if (__y > 0) \
{ \
if (__x > __y) \
return __m81_u(__atan##__s) (__y / __x); \
else \
return __pi_2 - __m81_u(__atan##__s) (__x / __y); \
} \
else \
{ \
if (__x > -__y) \
return __m81_u(__atan##__s) (__y / __x); \
else \
return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \
} \
} \
else \
{ \
if (__y > 0) \
{ \
if (-__x < __y) \
return __pi + __m81_u(__atan##__s) (__y / __x); \
else \
return __pi_2 - __m81_u(__atan##__s) (__x / __y); \
} \
else \
{ \
if (-__x > -__y) \
return -__pi + __m81_u(__atan##__s) (__y / __x); \
else \
return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \
} \
} \
} \
\
__m81_inline __float_type \
__m81_u(__frexp##__s)(__float_type __value, int *__expptr) \
{ \
__float_type __mantissa, __exponent; \
int __iexponent; \
if (__value == 0.0) \
{ \
*__expptr = 0; \
return __value; \
} \
__asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); \
__iexponent = (int) __exponent + 1; \
*__expptr = __iexponent; \
__asm("fscale%.l %2, %0" : "=f" (__mantissa) \
: "0" (__value), "dmi" (-__iexponent)); \
return __mantissa; \
} \
\
__m81_defun (__float_type, __floor##__s, (__float_type __x)) \
{ \
__float_type __result; \
unsigned long int __ctrl_reg; \
__asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
/* Set rounding towards negative infinity. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" ((__ctrl_reg & ~0x10) | 0x20)); \
/* Convert X to an integer, using -Inf rounding. */ \
__asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
/* Restore the previous rounding mode. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg)); \
return __result; \
} \
\
__m81_defun (__float_type, \
__ieee754_pow##__s, (__float_type __x, __float_type __y)) \
{ \
__float_type __result; \
if (__x == 0.0) \
{ \
if (__y <= 0.0) \
__result = 0.0 / 0.0; \
else \
__result = 0.0; \
} \
else if (__y == 0.0 || __x == 1.0) \
__result = 1.0; \
else if (__y == 1.0) \
__result = __x; \
else if (__y == 2.0) \
__result = __x * __x; \
else if (__x == 10.0) \
__asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); \
else if (__x == 2.0) \
__asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); \
else if (__x < 0.0) \
{ \
__float_type __temp = __m81_u (__rint##__s) (__y); \
if (__y == __temp) \
{ \
int __i = (int) __y; \
__result = (__m81_u(__ieee754_exp##__s) \
(__y * __m81_u(__ieee754_log##__s) (-__x))); \
if (__i & 1) \
__result = -__result; \
} \
else \
__result = 0.0 / 0.0; \
} \
else \
__result = (__m81_u(__ieee754_exp##__s) \
(__y * __m81_u(__ieee754_log##__s) (__x))); \
return __result; \
} \
\
__m81_defun (__float_type, __ceil##__s, (__float_type __x)) \
{ \
__float_type __result; \
unsigned long int __ctrl_reg; \
__asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
/* Set rounding towards positive infinity. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg | 0x30)); \
/* Convert X to an integer, using +Inf rounding. */ \
__asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
/* Restore the previous rounding mode. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg)); \
return __result; \
} \
\
__m81_inline __float_type \
__m81_u(__modf##__s)(__float_type __value, __float_type *__iptr) \
{ \
__float_type __modf_int; \
__asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); \
*__iptr = __modf_int; \
return __value - __modf_int; \
} \
\
__m81_defun (int, __isinf##__s, (__float_type __value)) \
{ \
/* There is no branch-condition for infinity, \
so we must extract and examine the condition codes manually. */ \
unsigned long int __fpsr; \
__asm("ftst%.x %1\n" \
"fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; \
} \
\
__m81_defun (int, __isnan##__s, (__float_type __value)) \
{ \
char __result; \
__asm("ftst%.x %1\n" \
"fsun %0" : "=dm" (__result) : "f" (__value)); \
return __result; \
} \
\
__m81_defun (int, __finite##__s, (__float_type __value)) \
{ \
/* There is no branch-condition for infinity, so we must extract and \
examine the condition codes manually. */ \
unsigned long int __fpsr; \
__asm ("ftst%.x %1\n" \
"fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
return (__fpsr & (3 << 24)) == 0; \
} \
\
__m81_defun (int, __ilogb##__s, (__float_type __x)) \
{ \
__float_type __result; \
if (__x == 0.0) \
return 0x80000001; \
__asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); \
return (int) __result; \
} \
\
__m81_defun (__float_type, \
__ieee754_scalb##__s, (__float_type __x, __float_type __n)) \
{ \
__float_type __result; \
__asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); \
return __result; \
} \
\
__m81_defun (__float_type, __scalbn##__s, (__float_type __x, int __n)) \
{ \
__float_type __result; \
__asm ("fscale%.l %1, %0" : "=f" (__result) : "dmi" (__n), "0" (__x)); \
return __result; \
}
/* This defines the three variants of the inline functions. */
__inline_functions (double, )
__inline_functions (float, f)
__inline_functions (long double, l)
#undef __inline_functions
#endif /* GCC. */