mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-04 02:40:06 +00:00
b3f27d8150
This patch adds the narrowing fused multiply-add functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal, f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x, f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128, f64xfmaf128 for configurations with _Float64x and _Float128; __f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case (for calls to ffmal and dfmal when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, especially that for sqrt, so the description of those generally applies to this patch as well. As with sqrt, I reused the same test inputs in auto-libm-test-in as for non-narrowing fma rather than adding extra or separate inputs for narrowing fma. The tests in libm-test-narrow-fma.inc also follow those for non-narrowing fma. The non-narrowing fma has a known bug (bug 6801) that it does not set errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather than fixing this or having narrowing fma check for errors when non-narrowing does not (complicating the cases when narrowing fma can otherwise be an alias for a non-narrowing function), this patch does not attempt to check for errors from narrowing fma and set errno; the CHECK_NARROW_FMA macro is still present, but as a placeholder that does nothing, and this missing errno setting is considered to be covered by the existing bug rather than needing a separate open bug. missing-errno annotations are duly added to many of the auto-libm-test-in test inputs for fma. This completes adding all the new functions from TS 18661-1 to glibc, so will be followed by corresponding stdc-predef.h changes to define __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support for TS 18661-1 will be at a similar level to that for C standard floating-point facilities up to C11 (pragmas not implemented, but library functions done). (There are still further changes to be done to implement changes to the types of fromfp functions from N2548.) Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
310 lines
9.9 KiB
C
310 lines
9.9 KiB
C
/* Compute x * y + z as ternary operation.
|
|
Copyright (C) 2010-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#define NO_MATH_REDIRECT
|
|
#include <float.h>
|
|
#define f64xfmaf128 __hide_f64xfmaf128
|
|
#include <math.h>
|
|
#undef f64xfmaf128
|
|
#include <fenv.h>
|
|
#include <ieee754.h>
|
|
#include <math-barriers.h>
|
|
#include <math_private.h>
|
|
#include <libm-alias-ldouble.h>
|
|
#include <math-narrow-alias.h>
|
|
#include <tininess.h>
|
|
#include <math-use-builtins.h>
|
|
|
|
/* This implementation uses rounding to odd to avoid problems with
|
|
double rounding. See a paper by Boldo and Melquiond:
|
|
http://www.lri.fr/~melquion/doc/08-tc.pdf */
|
|
|
|
_Float128
|
|
__fmal (_Float128 x, _Float128 y, _Float128 z)
|
|
{
|
|
#if USE_FMAL_BUILTIN
|
|
return __builtin_fmal (x, y, z);
|
|
#else
|
|
union ieee854_long_double u, v, w;
|
|
int adjust = 0;
|
|
u.d = x;
|
|
v.d = y;
|
|
w.d = z;
|
|
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
>= 0x7fff + IEEE854_LONG_DOUBLE_BIAS
|
|
- LDBL_MANT_DIG, 0)
|
|
|| __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
|
|
|| __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
|
|
|| __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
|
|
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0))
|
|
{
|
|
/* If z is Inf, but x and y are finite, the result should be
|
|
z rather than NaN. */
|
|
if (w.ieee.exponent == 0x7fff
|
|
&& u.ieee.exponent != 0x7fff
|
|
&& v.ieee.exponent != 0x7fff)
|
|
return (z + x) + y;
|
|
/* If z is zero and x are y are nonzero, compute the result
|
|
as x * y to avoid the wrong sign of a zero result if x * y
|
|
underflows to 0. */
|
|
if (z == 0 && x != 0 && y != 0)
|
|
return x * y;
|
|
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as
|
|
x * y + z. */
|
|
if (u.ieee.exponent == 0x7fff
|
|
|| v.ieee.exponent == 0x7fff
|
|
|| w.ieee.exponent == 0x7fff
|
|
|| x == 0
|
|
|| y == 0)
|
|
return x * y + z;
|
|
/* If fma will certainly overflow, compute as x * y. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
> 0x7fff + IEEE854_LONG_DOUBLE_BIAS)
|
|
return x * y;
|
|
/* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the
|
|
result nor whether there is underflow depends on its exact
|
|
value, only on its sign. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
< IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2)
|
|
{
|
|
int neg = u.ieee.negative ^ v.ieee.negative;
|
|
_Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494);
|
|
if (w.ieee.exponent >= 3)
|
|
return tiny + z;
|
|
/* Scaling up, adding TINY and scaling down produces the
|
|
correct result, because in round-to-nearest mode adding
|
|
TINY has no effect and in other modes double rounding is
|
|
harmless. But it may not produce required underflow
|
|
exceptions. */
|
|
v.d = z * L(0x1p114) + tiny;
|
|
if (TININESS_AFTER_ROUNDING
|
|
? v.ieee.exponent < 115
|
|
: (w.ieee.exponent == 0
|
|
|| (w.ieee.exponent == 1
|
|
&& w.ieee.negative != neg
|
|
&& w.ieee.mantissa3 == 0
|
|
&& w.ieee.mantissa2 == 0
|
|
&& w.ieee.mantissa1 == 0
|
|
&& w.ieee.mantissa0 == 0)))
|
|
{
|
|
_Float128 force_underflow = x * y;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
return v.d * L(0x1p-114);
|
|
}
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
>= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG)
|
|
{
|
|
/* Compute 1p-113 times smaller result and multiply
|
|
at the end. */
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent -= LDBL_MANT_DIG;
|
|
else
|
|
v.ieee.exponent -= LDBL_MANT_DIG;
|
|
/* If x + y exponent is very large and z exponent is very small,
|
|
it doesn't matter if we don't adjust it. */
|
|
if (w.ieee.exponent > LDBL_MANT_DIG)
|
|
w.ieee.exponent -= LDBL_MANT_DIG;
|
|
adjust = 1;
|
|
}
|
|
else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
|
|
{
|
|
/* Similarly.
|
|
If z exponent is very large and x and y exponents are
|
|
very small, adjust them up to avoid spurious underflows,
|
|
rather than down. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG)
|
|
{
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
|
|
else
|
|
v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
|
|
}
|
|
else if (u.ieee.exponent > v.ieee.exponent)
|
|
{
|
|
if (u.ieee.exponent > LDBL_MANT_DIG)
|
|
u.ieee.exponent -= LDBL_MANT_DIG;
|
|
}
|
|
else if (v.ieee.exponent > LDBL_MANT_DIG)
|
|
v.ieee.exponent -= LDBL_MANT_DIG;
|
|
w.ieee.exponent -= LDBL_MANT_DIG;
|
|
adjust = 1;
|
|
}
|
|
else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
|
|
{
|
|
u.ieee.exponent -= LDBL_MANT_DIG;
|
|
if (v.ieee.exponent)
|
|
v.ieee.exponent += LDBL_MANT_DIG;
|
|
else
|
|
v.d *= L(0x1p113);
|
|
}
|
|
else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
|
|
{
|
|
v.ieee.exponent -= LDBL_MANT_DIG;
|
|
if (u.ieee.exponent)
|
|
u.ieee.exponent += LDBL_MANT_DIG;
|
|
else
|
|
u.d *= L(0x1p113);
|
|
}
|
|
else /* if (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */
|
|
{
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
|
|
else
|
|
v.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
|
|
if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6)
|
|
{
|
|
if (w.ieee.exponent)
|
|
w.ieee.exponent += 2 * LDBL_MANT_DIG + 2;
|
|
else
|
|
w.d *= L(0x1p228);
|
|
adjust = -1;
|
|
}
|
|
/* Otherwise x * y should just affect inexact
|
|
and nothing else. */
|
|
}
|
|
x = u.d;
|
|
y = v.d;
|
|
z = w.d;
|
|
}
|
|
|
|
/* Ensure correct sign of exact 0 + 0. */
|
|
if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
|
|
{
|
|
x = math_opt_barrier (x);
|
|
return x * y + z;
|
|
}
|
|
|
|
fenv_t env;
|
|
feholdexcept (&env);
|
|
fesetround (FE_TONEAREST);
|
|
|
|
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
|
|
#define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
|
|
_Float128 x1 = x * C;
|
|
_Float128 y1 = y * C;
|
|
_Float128 m1 = x * y;
|
|
x1 = (x - x1) + x1;
|
|
y1 = (y - y1) + y1;
|
|
_Float128 x2 = x - x1;
|
|
_Float128 y2 = y - y1;
|
|
_Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
|
|
|
|
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
|
|
_Float128 a1 = z + m1;
|
|
_Float128 t1 = a1 - z;
|
|
_Float128 t2 = a1 - t1;
|
|
t1 = m1 - t1;
|
|
t2 = z - t2;
|
|
_Float128 a2 = t1 + t2;
|
|
/* Ensure the arithmetic is not scheduled after feclearexcept call. */
|
|
math_force_eval (m2);
|
|
math_force_eval (a2);
|
|
feclearexcept (FE_INEXACT);
|
|
|
|
/* If the result is an exact zero, ensure it has the correct sign. */
|
|
if (a1 == 0 && m2 == 0)
|
|
{
|
|
feupdateenv (&env);
|
|
/* Ensure that round-to-nearest value of z + m1 is not reused. */
|
|
z = math_opt_barrier (z);
|
|
return z + m1;
|
|
}
|
|
|
|
fesetround (FE_TOWARDZERO);
|
|
/* Perform m2 + a2 addition with round to odd. */
|
|
u.d = a2 + m2;
|
|
|
|
if (__glibc_likely (adjust == 0))
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Result is a1 + u.d. */
|
|
return a1 + u.d;
|
|
}
|
|
else if (__glibc_likely (adjust > 0))
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Result is a1 + u.d, scaled up. */
|
|
return (a1 + u.d) * L(0x1p113);
|
|
}
|
|
else
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
v.d = a1 + u.d;
|
|
/* Ensure the addition is not scheduled after fetestexcept call. */
|
|
math_force_eval (v.d);
|
|
int j = fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Ensure the following computations are performed in default rounding
|
|
mode instead of just reusing the round to zero computation. */
|
|
asm volatile ("" : "=m" (u) : "m" (u));
|
|
/* If a1 + u.d is exact, the only rounding happens during
|
|
scaling down. */
|
|
if (j == 0)
|
|
return v.d * L(0x1p-228);
|
|
/* If result rounded to zero is not subnormal, no double
|
|
rounding will occur. */
|
|
if (v.ieee.exponent > 228)
|
|
return (a1 + u.d) * L(0x1p-228);
|
|
/* If v.d * 0x1p-228L with round to zero is a subnormal above
|
|
or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa
|
|
down just by 1 bit, which means v.ieee.mantissa3 |= j would
|
|
change the round bit, not sticky or guard bit.
|
|
v.d * 0x1p-228L never normalizes by shifting up,
|
|
so round bit plus sticky bit should be already enough
|
|
for proper rounding. */
|
|
if (v.ieee.exponent == 228)
|
|
{
|
|
/* If the exponent would be in the normal range when
|
|
rounding to normal precision with unbounded exponent
|
|
range, the exact result is known and spurious underflows
|
|
must be avoided on systems detecting tininess after
|
|
rounding. */
|
|
if (TININESS_AFTER_ROUNDING)
|
|
{
|
|
w.d = a1 + u.d;
|
|
if (w.ieee.exponent == 229)
|
|
return w.d * L(0x1p-228);
|
|
}
|
|
/* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding,
|
|
v.ieee.mantissa3 & 1 is the round bit and j is our sticky
|
|
bit. */
|
|
w.d = 0;
|
|
w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j;
|
|
w.ieee.negative = v.ieee.negative;
|
|
v.ieee.mantissa3 &= ~3U;
|
|
v.d *= L(0x1p-228);
|
|
w.d *= L(0x1p-2);
|
|
return v.d + w.d;
|
|
}
|
|
v.ieee.mantissa3 |= j;
|
|
return v.d * L(0x1p-228);
|
|
}
|
|
#endif /* ! USE_FMAL_BUILTIN */
|
|
}
|
|
libm_alias_ldouble (__fma, fma)
|
|
libm_alias_ldouble_narrow (__fma, fma)
|