glibc/nptl/pthread_mutex_timedlock.c
Kemi Wang 6310e6be9b Mutex: Add pthread mutex tunables
This patch does not have any functionality change, we only provide a spin
count tunes for pthread adaptive spin mutex. The tunable
glibc.pthread.mutex_spin_count tunes can be used by system administrator to
squeeze system performance according to different hardware capabilities and
workload characteristics.

The maximum value of spin count is limited to 32767 to avoid the overflow
of mutex->__data.__spins variable with the possible type of short in
pthread_mutex_lock ().

The default value of spin count is set to 100 with the reference to the
previous number of times of spinning via trylock. This value would be
architecture-specific and can be tuned with kinds of benchmarks to fit most
cases in future.

I would extend my appreciation sincerely to H.J.Lu for his help to refine
this patch series.

	* manual/tunables.texi (POSIX Thread Tunables): New node.
	* nptl/Makefile (libpthread-routines): Add pthread_mutex_conf.
	* nptl/nptl-init.c: Include pthread_mutex_conf.h
	(__pthread_initialize_minimal_internal) [HAVE_TUNABLES]: Call
	 __pthread_tunables_init.
	* nptl/pthreadP.h (MAX_ADAPTIVE_COUNT): Remove.
	(max_adaptive_count): Define.
	* nptl/pthread_mutex_conf.c: New file.
	* nptl/pthread_mutex_conf.h: New file.
	* sysdeps/generic/adaptive_spin_count.h: New file.
	* sysdeps/nptl/dl-tunables.list: New file.
	* nptl/pthread_mutex_lock.c (__pthread_mutex_lock): Use
	max_adaptive_count () not MAX_ADAPTIVE_COUNT.
	* nptl/pthread_mutex_timedlock.c (__pthrad_mutex_timedlock):
	Likewise.

Suggested-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Kemi.wang <kemi.wang@intel.com>
2018-12-01 08:19:20 -08:00

652 lines
19 KiB
C

/* Copyright (C) 2002-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <time.h>
#include <sys/param.h>
#include <sys/time.h>
#include "pthreadP.h"
#include <atomic.h>
#include <lowlevellock.h>
#include <not-cancel.h>
#include <stap-probe.h>
#ifndef lll_timedlock_elision
#define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c)
#endif
#ifndef lll_trylock_elision
#define lll_trylock_elision(a,t) lll_trylock(a)
#endif
#ifndef FORCE_ELISION
#define FORCE_ELISION(m, s)
#endif
int
__pthread_mutex_timedlock (pthread_mutex_t *mutex,
const struct timespec *abstime)
{
int oldval;
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
int result = 0;
LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime);
/* We must not check ABSTIME here. If the thread does not block
abstime must not be checked for a valid value. */
/* See concurrency notes regarding mutex type which is loaded from __kind
in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */
switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex),
PTHREAD_MUTEX_TIMED_NP))
{
/* Recursive mutex. */
case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP:
case PTHREAD_MUTEX_RECURSIVE_NP:
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
goto out;
}
/* We have to get the mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
if (result != 0)
goto out;
/* Only locked once so far. */
mutex->__data.__count = 1;
break;
/* Error checking mutex. */
case PTHREAD_MUTEX_ERRORCHECK_NP:
/* Check whether we already hold the mutex. */
if (__glibc_unlikely (mutex->__data.__owner == id))
return EDEADLK;
/* Don't do lock elision on an error checking mutex. */
goto simple;
case PTHREAD_MUTEX_TIMED_NP:
FORCE_ELISION (mutex, goto elision);
simple:
/* Normal mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
case PTHREAD_MUTEX_TIMED_ELISION_NP:
elision: __attribute__((unused))
/* Don't record ownership */
return lll_timedlock_elision (mutex->__data.__lock,
mutex->__data.__spins,
abstime,
PTHREAD_MUTEX_PSHARED (mutex));
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (! __is_smp)
goto simple;
if (lll_trylock (mutex->__data.__lock) != 0)
{
int cnt = 0;
int max_cnt = MIN (max_adaptive_count (),
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
}
atomic_spin_nop ();
}
while (lll_trylock (mutex->__data.__lock) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
break;
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
/* We need to set op_pending before starting the operation. Also
see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
oldval = mutex->__data.__lock;
/* This is set to FUTEX_WAITERS iff we might have shared the
FUTEX_WAITERS flag with other threads, and therefore need to keep it
set to avoid lost wake-ups. We have the same requirement in the
simple mutex algorithm. */
unsigned int assume_other_futex_waiters = 0;
while (1)
{
/* Try to acquire the lock through a CAS from 0 (not acquired) to
our TID | assume_other_futex_waiters. */
if (__glibc_likely (oldval == 0))
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id | assume_other_futex_waiters, 0);
if (__glibc_likely (oldval == 0))
break;
}
if ((oldval & FUTEX_OWNER_DIED) != 0)
{
/* The previous owner died. Try locking the mutex. */
int newval = id | (oldval & FUTEX_WAITERS)
| assume_other_futex_waiters;
newval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, oldval);
if (newval != oldval)
{
oldval = newval;
continue;
}
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old
owner has to be discounted. */
return EOWNERDEAD;
}
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
int kind = PTHREAD_MUTEX_TYPE (mutex);
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
{
/* We do not need to ensure ordering wrt another memory
access. Also see comments at ENQUEUE_MUTEX. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
/* We are about to block; check whether the timeout is invalid. */
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
return EINVAL;
/* Work around the fact that the kernel rejects negative timeout
values despite them being valid. */
if (__glibc_unlikely (abstime->tv_sec < 0))
return ETIMEDOUT;
#if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
|| !defined lll_futex_timed_wait_bitset)
struct timeval tv;
struct timespec rt;
/* Get the current time. */
(void) __gettimeofday (&tv, NULL);
/* Compute relative timeout. */
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
if (rt.tv_nsec < 0)
{
rt.tv_nsec += 1000000000;
--rt.tv_sec;
}
/* Already timed out? */
if (rt.tv_sec < 0)
return ETIMEDOUT;
#endif
/* We cannot acquire the mutex nor has its owner died. Thus, try
to block using futexes. Set FUTEX_WAITERS if necessary so that
other threads are aware that there are potentially threads
blocked on the futex. Restart if oldval changed in the
meantime. */
if ((oldval & FUTEX_WAITERS) == 0)
{
if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock,
oldval | FUTEX_WAITERS,
oldval)
!= 0)
{
oldval = mutex->__data.__lock;
continue;
}
oldval |= FUTEX_WAITERS;
}
/* It is now possible that we share the FUTEX_WAITERS flag with
another thread; therefore, update assume_other_futex_waiters so
that we do not forget about this when handling other cases
above and thus do not cause lost wake-ups. */
assume_other_futex_waiters |= FUTEX_WAITERS;
/* Block using the futex. */
#if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
|| !defined lll_futex_timed_wait_bitset)
lll_futex_timed_wait (&mutex->__data.__lock, oldval,
&rt, PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
#else
int err = lll_futex_timed_wait_bitset (&mutex->__data.__lock,
oldval, abstime, FUTEX_CLOCK_REALTIME,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
/* The futex call timed out. */
if (err == -ETIMEDOUT)
return -err;
#endif
/* Reload current lock value. */
oldval = mutex->__data.__lock;
}
/* We have acquired the mutex; check if it is still consistent. */
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
lll_unlock (mutex->__data.__lock, private);
/* FIXME This violates the mutex destruction requirements. See
__pthread_mutex_unlock_full. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
/* The PI support requires the Linux futex system call. If that's not
available, pthread_mutex_init should never have allowed the type to
be set. So it will get the default case for an invalid type. */
#ifdef __NR_futex
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
{
int kind, robust;
{
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind));
kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP;
robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
}
if (robust)
{
/* Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
/* We need to set op_pending before starting the operation. Also
see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
}
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id, 0);
if (oldval != 0)
{
/* The mutex is locked. The kernel will now take care of
everything. The timeout value must be a relative value.
Convert it. */
int private = (robust
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
: PTHREAD_MUTEX_PSHARED (mutex));
INTERNAL_SYSCALL_DECL (__err);
int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_LOCK_PI,
private), 1,
abstime);
if (INTERNAL_SYSCALL_ERROR_P (e, __err))
{
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
return ETIMEDOUT;
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
|| INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
{
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
/* ESRCH can happen only for non-robust PI mutexes where
the owner of the lock died. */
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
|| !robust);
/* Delay the thread until the timeout is reached.
Then return ETIMEDOUT. */
struct timespec reltime;
struct timespec now;
INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
&now);
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
if (reltime.tv_nsec < 0)
{
reltime.tv_nsec += 1000000000;
--reltime.tv_sec;
}
if (reltime.tv_sec >= 0)
while (__nanosleep_nocancel (&reltime, &reltime) != 0)
continue;
return ETIMEDOUT;
}
return INTERNAL_SYSCALL_ERRNO (e, __err);
}
oldval = mutex->__data.__lock;
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
}
if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
{
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX_PI (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old owner
has to be discounted. */
return EOWNERDEAD;
}
if (robust
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
INTERNAL_SYSCALL_DECL (__err);
INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_UNLOCK_PI,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
0, 0);
/* To the kernel, this will be visible after the kernel has
acquired the mutex in the syscall. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
if (robust)
{
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX_PI (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
}
}
break;
#endif /* __NR_futex. */
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
{
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
int kind = atomic_load_relaxed (&(mutex->__data.__kind))
& PTHREAD_MUTEX_KIND_MASK_NP;
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
return EDEADLK;
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
int oldprio = -1, ceilval;
do
{
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
if (__pthread_current_priority () > ceiling)
{
result = EINVAL;
failpp:
if (oldprio != -1)
__pthread_tpp_change_priority (oldprio, -1);
return result;
}
result = __pthread_tpp_change_priority (oldprio, ceiling);
if (result)
return result;
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
oldprio = ceiling;
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 1, ceilval);
if (oldval == ceilval)
break;
do
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2,
ceilval | 1);
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
break;
if (oldval != ceilval)
{
/* Reject invalid timeouts. */
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
{
result = EINVAL;
goto failpp;
}
struct timeval tv;
struct timespec rt;
/* Get the current time. */
(void) __gettimeofday (&tv, NULL);
/* Compute relative timeout. */
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
if (rt.tv_nsec < 0)
{
rt.tv_nsec += 1000000000;
--rt.tv_sec;
}
/* Already timed out? */
if (rt.tv_sec < 0)
{
result = ETIMEDOUT;
goto failpp;
}
lll_futex_timed_wait (&mutex->__data.__lock,
ceilval | 2, &rt,
PTHREAD_MUTEX_PSHARED (mutex));
}
}
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2, ceilval)
!= ceilval);
}
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
}
break;
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
if (result == 0)
{
/* Record the ownership. */
mutex->__data.__owner = id;
++mutex->__data.__nusers;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
}
out:
return result;
}
weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock)