mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-16 01:50:11 +00:00
63dbe5f322
Similar to various other bugs in this area, j1 and jn implementations can fail to raise the underflow exception when the internal computation is exact although the actual function is inexact. This patch forces the exception in a similar way to other such fixes. (The ldbl-128 / ldbl-128ibm j1l implementation is different and doesn't need a change for this until spurious underflows in it are fixed.) Tested for x86_64, x86, mips64 and powerpc. [BZ #16559] * sysdeps/ieee754/dbl-64/e_j1.c: Include <float.h>. (__ieee754_j1): Force underflow exception for small results. * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c: Include <float.h>. (__ieee754_j1f): Force underflow exception for small results. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_j1l.c: Include <float.h>. (__ieee754_j1l): Force underflow exception for small results. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise. * math/auto-libm-test-in: Add more tests of j1 and jn. * math/auto-libm-test-out: Regenerated.
553 lines
17 KiB
C
553 lines
17 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* Long double expansions are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __ieee754_j1(x), __ieee754_y1(x)
|
|
* Bessel function of the first and second kinds of order zero.
|
|
* Method -- j1(x):
|
|
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
|
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
|
* for x in (0,2)
|
|
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
|
* for x in (2,inf)
|
|
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
|
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
|
* as follow:
|
|
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
* = -1/sqrt(2) * (sin(x) + cos(x))
|
|
* (To avoid cancellation, use
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
* to compute the worse one.)
|
|
*
|
|
* 3 Special cases
|
|
* j1(nan)= nan
|
|
* j1(0) = 0
|
|
* j1(inf) = 0
|
|
*
|
|
* Method -- y1(x):
|
|
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
|
* 2. For x<2.
|
|
* Since
|
|
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
|
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
|
* We use the following function to approximate y1,
|
|
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
|
* Note: For tiny x, 1/x dominate y1 and hence
|
|
* y1(tiny) = -2/pi/tiny
|
|
* 3. For x>=2.
|
|
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
|
* by method mentioned above.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static long double pone (long double), qone (long double);
|
|
|
|
static const long double
|
|
huge = 1e4930L,
|
|
one = 1.0L,
|
|
invsqrtpi = 5.6418958354775628694807945156077258584405e-1L,
|
|
tpi = 6.3661977236758134307553505349005744813784e-1L,
|
|
|
|
/* J1(x) = .5 x + x x^2 R(x^2) / S(x^2)
|
|
0 <= x <= 2
|
|
Peak relative error 4.5e-21 */
|
|
R[5] = {
|
|
-9.647406112428107954753770469290757756814E7L,
|
|
2.686288565865230690166454005558203955564E6L,
|
|
-3.689682683905671185891885948692283776081E4L,
|
|
2.195031194229176602851429567792676658146E2L,
|
|
-5.124499848728030297902028238597308971319E-1L,
|
|
},
|
|
|
|
S[4] =
|
|
{
|
|
1.543584977988497274437410333029029035089E9L,
|
|
2.133542369567701244002565983150952549520E7L,
|
|
1.394077011298227346483732156167414670520E5L,
|
|
5.252401789085732428842871556112108446506E2L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
static const long double zero = 0.0;
|
|
|
|
|
|
long double
|
|
__ieee754_j1l (long double x)
|
|
{
|
|
long double z, c, r, s, ss, cc, u, v, y;
|
|
int32_t ix;
|
|
u_int32_t se;
|
|
|
|
GET_LDOUBLE_EXP (se, x);
|
|
ix = se & 0x7fff;
|
|
if (__glibc_unlikely (ix >= 0x7fff))
|
|
return one / x;
|
|
y = fabsl (x);
|
|
if (ix >= 0x4000)
|
|
{ /* |x| >= 2.0 */
|
|
__sincosl (y, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (ix < 0x7ffe)
|
|
{ /* make sure y+y not overflow */
|
|
z = __cosl (y + y);
|
|
if ((s * c) > zero)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
/*
|
|
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
|
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
|
*/
|
|
if (__glibc_unlikely (ix > 0x4080))
|
|
z = (invsqrtpi * cc) / __ieee754_sqrtl (y);
|
|
else
|
|
{
|
|
u = pone (y);
|
|
v = qone (y);
|
|
z = invsqrtpi * (u * cc - v * ss) / __ieee754_sqrtl (y);
|
|
}
|
|
if (se & 0x8000)
|
|
return -z;
|
|
else
|
|
return z;
|
|
}
|
|
if (__glibc_unlikely (ix < 0x3fde)) /* |x| < 2^-33 */
|
|
{
|
|
if (huge + x > one) /* inexact if x!=0 necessary */
|
|
{
|
|
long double ret = 0.5 * x;
|
|
if (fabsl (ret) < LDBL_MIN)
|
|
{
|
|
long double force_underflow = ret * ret;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
z = x * x;
|
|
r = z * (R[0] + z * (R[1]+ z * (R[2] + z * (R[3] + z * R[4]))));
|
|
s = S[0] + z * (S[1] + z * (S[2] + z * (S[3] + z)));
|
|
r *= x;
|
|
return (x * 0.5 + r / s);
|
|
}
|
|
strong_alias (__ieee754_j1l, __j1l_finite)
|
|
|
|
|
|
/* Y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + x R(x^2)
|
|
0 <= x <= 2
|
|
Peak relative error 2.3e-23 */
|
|
static const long double U0[6] = {
|
|
-5.908077186259914699178903164682444848615E10L,
|
|
1.546219327181478013495975514375773435962E10L,
|
|
-6.438303331169223128870035584107053228235E8L,
|
|
9.708540045657182600665968063824819371216E6L,
|
|
-6.138043997084355564619377183564196265471E4L,
|
|
1.418503228220927321096904291501161800215E2L,
|
|
};
|
|
static const long double V0[5] = {
|
|
3.013447341682896694781964795373783679861E11L,
|
|
4.669546565705981649470005402243136124523E9L,
|
|
3.595056091631351184676890179233695857260E7L,
|
|
1.761554028569108722903944659933744317994E5L,
|
|
5.668480419646516568875555062047234534863E2L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
|
|
long double
|
|
__ieee754_y1l (long double x)
|
|
{
|
|
long double z, s, c, ss, cc, u, v;
|
|
int32_t ix;
|
|
u_int32_t se, i0, i1;
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
ix = se & 0x7fff;
|
|
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
|
if (__glibc_unlikely (se & 0x8000))
|
|
return zero / (zero * x);
|
|
if (__glibc_unlikely (ix >= 0x7fff))
|
|
return one / (x + x * x);
|
|
if (__glibc_unlikely ((i0 | i1) == 0))
|
|
return -HUGE_VALL + x; /* -inf and overflow exception. */
|
|
if (ix >= 0x4000)
|
|
{ /* |x| >= 2.0 */
|
|
__sincosl (x, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (ix < 0x7ffe)
|
|
{ /* make sure x+x not overflow */
|
|
z = __cosl (x + x);
|
|
if ((s * c) > zero)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
|
* where x0 = x-3pi/4
|
|
* Better formula:
|
|
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
* = -1/sqrt(2) * (cos(x) + sin(x))
|
|
* To avoid cancellation, use
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
* to compute the worse one.
|
|
*/
|
|
if (__glibc_unlikely (ix > 0x4080))
|
|
z = (invsqrtpi * ss) / __ieee754_sqrtl (x);
|
|
else
|
|
{
|
|
u = pone (x);
|
|
v = qone (x);
|
|
z = invsqrtpi * (u * ss + v * cc) / __ieee754_sqrtl (x);
|
|
}
|
|
return z;
|
|
}
|
|
if (__glibc_unlikely (ix <= 0x3fbe))
|
|
{ /* x < 2**-65 */
|
|
z = -tpi / x;
|
|
if (isinf (z))
|
|
__set_errno (ERANGE);
|
|
return z;
|
|
}
|
|
z = x * x;
|
|
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * (U0[4] + z * U0[5]))));
|
|
v = V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * (V0[4] + z))));
|
|
return (x * (u / v) +
|
|
tpi * (__ieee754_j1l (x) * __ieee754_logl (x) - one / x));
|
|
}
|
|
strong_alias (__ieee754_y1l, __y1l_finite)
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of pone is
|
|
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
|
* We approximate pone by
|
|
* pone(x) = 1 + (R/S)
|
|
*/
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
8 <= x <= inf (0 <= z <= 0.125)
|
|
Peak relative error 5.2e-22 */
|
|
|
|
static const long double pr8[7] = {
|
|
8.402048819032978959298664869941375143163E-9L,
|
|
1.813743245316438056192649247507255996036E-6L,
|
|
1.260704554112906152344932388588243836276E-4L,
|
|
3.439294839869103014614229832700986965110E-3L,
|
|
3.576910849712074184504430254290179501209E-2L,
|
|
1.131111483254318243139953003461511308672E-1L,
|
|
4.480715825681029711521286449131671880953E-2L,
|
|
};
|
|
static const long double ps8[6] = {
|
|
7.169748325574809484893888315707824924354E-8L,
|
|
1.556549720596672576431813934184403614817E-5L,
|
|
1.094540125521337139209062035774174565882E-3L,
|
|
3.060978962596642798560894375281428805840E-2L,
|
|
3.374146536087205506032643098619414507024E-1L,
|
|
1.253830208588979001991901126393231302559E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
4.54541015625 <= x <= 8
|
|
Peak relative error 7.7e-22 */
|
|
static const long double pr5[7] = {
|
|
4.318486887948814529950980396300969247900E-7L,
|
|
4.715341880798817230333360497524173929315E-5L,
|
|
1.642719430496086618401091544113220340094E-3L,
|
|
2.228688005300803935928733750456396149104E-2L,
|
|
1.142773760804150921573259605730018327162E-1L,
|
|
1.755576530055079253910829652698703791957E-1L,
|
|
3.218803858282095929559165965353784980613E-2L,
|
|
};
|
|
static const long double ps5[6] = {
|
|
3.685108812227721334719884358034713967557E-6L,
|
|
4.069102509511177498808856515005792027639E-4L,
|
|
1.449728676496155025507893322405597039816E-2L,
|
|
2.058869213229520086582695850441194363103E-1L,
|
|
1.164890985918737148968424972072751066553E0L,
|
|
2.274776933457009446573027260373361586841E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L,*/
|
|
};
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
2.85711669921875 <= x <= 4.54541015625
|
|
Peak relative error 6.5e-21 */
|
|
static const long double pr3[7] = {
|
|
1.265251153957366716825382654273326407972E-5L,
|
|
8.031057269201324914127680782288352574567E-4L,
|
|
1.581648121115028333661412169396282881035E-2L,
|
|
1.179534658087796321928362981518645033967E-1L,
|
|
3.227936912780465219246440724502790727866E-1L,
|
|
2.559223765418386621748404398017602935764E-1L,
|
|
2.277136933287817911091370397134882441046E-2L,
|
|
};
|
|
static const long double ps3[6] = {
|
|
1.079681071833391818661952793568345057548E-4L,
|
|
6.986017817100477138417481463810841529026E-3L,
|
|
1.429403701146942509913198539100230540503E-1L,
|
|
1.148392024337075609460312658938700765074E0L,
|
|
3.643663015091248720208251490291968840882E0L,
|
|
3.990702269032018282145100741746633960737E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
2 <= x <= 2.85711669921875
|
|
Peak relative error 3.5e-21 */
|
|
static const long double pr2[7] = {
|
|
2.795623248568412225239401141338714516445E-4L,
|
|
1.092578168441856711925254839815430061135E-2L,
|
|
1.278024620468953761154963591853679640560E-1L,
|
|
5.469680473691500673112904286228351988583E-1L,
|
|
8.313769490922351300461498619045639016059E-1L,
|
|
3.544176317308370086415403567097130611468E-1L,
|
|
1.604142674802373041247957048801599740644E-2L,
|
|
};
|
|
static const long double ps2[6] = {
|
|
2.385605161555183386205027000675875235980E-3L,
|
|
9.616778294482695283928617708206967248579E-2L,
|
|
1.195215570959693572089824415393951258510E0L,
|
|
5.718412857897054829999458736064922974662E0L,
|
|
1.065626298505499086386584642761602177568E1L,
|
|
6.809140730053382188468983548092322151791E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
|
|
static long double
|
|
pone (long double x)
|
|
{
|
|
const long double *p, *q;
|
|
long double z, r, s;
|
|
int32_t ix;
|
|
u_int32_t se, i0, i1;
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
ix = se & 0x7fff;
|
|
/* ix >= 0x4000 for all calls to this function. */
|
|
if (ix >= 0x4002) /* x >= 8 */
|
|
{
|
|
p = pr8;
|
|
q = ps8;
|
|
}
|
|
else
|
|
{
|
|
i1 = (ix << 16) | (i0 >> 16);
|
|
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
|
{
|
|
p = pr5;
|
|
q = ps5;
|
|
}
|
|
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
|
{
|
|
p = pr3;
|
|
q = ps3;
|
|
}
|
|
else /* x >= 2 */
|
|
{
|
|
p = pr2;
|
|
q = ps2;
|
|
}
|
|
}
|
|
z = one / (x * x);
|
|
r = p[0] + z * (p[1] +
|
|
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
|
s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z)))));
|
|
return one + z * r / s;
|
|
}
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of qone is
|
|
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
|
* We approximate pone by
|
|
* qone(x) = s*(0.375 + (R/S))
|
|
*/
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
8 <= x <= inf
|
|
Peak relative error 8.3e-22 */
|
|
|
|
static const long double qr8[7] = {
|
|
-5.691925079044209246015366919809404457380E-10L,
|
|
-1.632587664706999307871963065396218379137E-7L,
|
|
-1.577424682764651970003637263552027114600E-5L,
|
|
-6.377627959241053914770158336842725291713E-4L,
|
|
-1.087408516779972735197277149494929568768E-2L,
|
|
-6.854943629378084419631926076882330494217E-2L,
|
|
-1.055448290469180032312893377152490183203E-1L,
|
|
};
|
|
static const long double qs8[7] = {
|
|
5.550982172325019811119223916998393907513E-9L,
|
|
1.607188366646736068460131091130644192244E-6L,
|
|
1.580792530091386496626494138334505893599E-4L,
|
|
6.617859900815747303032860443855006056595E-3L,
|
|
1.212840547336984859952597488863037659161E-1L,
|
|
9.017885953937234900458186716154005541075E-1L,
|
|
2.201114489712243262000939120146436167178E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
4.54541015625 <= x <= 8
|
|
Peak relative error 4.1e-22 */
|
|
static const long double qr5[7] = {
|
|
-6.719134139179190546324213696633564965983E-8L,
|
|
-9.467871458774950479909851595678622044140E-6L,
|
|
-4.429341875348286176950914275723051452838E-4L,
|
|
-8.539898021757342531563866270278505014487E-3L,
|
|
-6.818691805848737010422337101409276287170E-2L,
|
|
-1.964432669771684034858848142418228214855E-1L,
|
|
-1.333896496989238600119596538299938520726E-1L,
|
|
};
|
|
static const long double qs5[7] = {
|
|
6.552755584474634766937589285426911075101E-7L,
|
|
9.410814032118155978663509073200494000589E-5L,
|
|
4.561677087286518359461609153655021253238E-3L,
|
|
9.397742096177905170800336715661091535805E-2L,
|
|
8.518538116671013902180962914473967738771E-1L,
|
|
3.177729183645800174212539541058292579009E0L,
|
|
4.006745668510308096259753538973038902990E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
2.85711669921875 <= x <= 4.54541015625
|
|
Peak relative error 2.2e-21 */
|
|
static const long double qr3[7] = {
|
|
-3.618746299358445926506719188614570588404E-6L,
|
|
-2.951146018465419674063882650970344502798E-4L,
|
|
-7.728518171262562194043409753656506795258E-3L,
|
|
-8.058010968753999435006488158237984014883E-2L,
|
|
-3.356232856677966691703904770937143483472E-1L,
|
|
-4.858192581793118040782557808823460276452E-1L,
|
|
-1.592399251246473643510898335746432479373E-1L,
|
|
};
|
|
static const long double qs3[7] = {
|
|
3.529139957987837084554591421329876744262E-5L,
|
|
2.973602667215766676998703687065066180115E-3L,
|
|
8.273534546240864308494062287908662592100E-2L,
|
|
9.613359842126507198241321110649974032726E-1L,
|
|
4.853923697093974370118387947065402707519E0L,
|
|
1.002671608961669247462020977417828796933E1L,
|
|
7.028927383922483728931327850683151410267E0L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
2 <= x <= 2.85711669921875
|
|
Peak relative error 6.9e-22 */
|
|
static const long double qr2[7] = {
|
|
-1.372751603025230017220666013816502528318E-4L,
|
|
-6.879190253347766576229143006767218972834E-3L,
|
|
-1.061253572090925414598304855316280077828E-1L,
|
|
-6.262164224345471241219408329354943337214E-1L,
|
|
-1.423149636514768476376254324731437473915E0L,
|
|
-1.087955310491078933531734062917489870754E0L,
|
|
-1.826821119773182847861406108689273719137E-1L,
|
|
};
|
|
static const long double qs2[7] = {
|
|
1.338768933634451601814048220627185324007E-3L,
|
|
7.071099998918497559736318523932241901810E-2L,
|
|
1.200511429784048632105295629933382142221E0L,
|
|
8.327301713640367079030141077172031825276E0L,
|
|
2.468479301872299311658145549931764426840E1L,
|
|
2.961179686096262083509383820557051621644E1L,
|
|
1.201402313144305153005639494661767354977E1L,
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
};
|
|
|
|
|
|
static long double
|
|
qone (long double x)
|
|
{
|
|
const long double *p, *q;
|
|
static long double s, r, z;
|
|
int32_t ix;
|
|
u_int32_t se, i0, i1;
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
ix = se & 0x7fff;
|
|
/* ix >= 0x4000 for all calls to this function. */
|
|
if (ix >= 0x4002) /* x >= 8 */
|
|
{
|
|
p = qr8;
|
|
q = qs8;
|
|
}
|
|
else
|
|
{
|
|
i1 = (ix << 16) | (i0 >> 16);
|
|
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
|
{
|
|
p = qr5;
|
|
q = qs5;
|
|
}
|
|
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
|
{
|
|
p = qr3;
|
|
q = qs3;
|
|
}
|
|
else /* x >= 2 */
|
|
{
|
|
p = qr2;
|
|
q = qs2;
|
|
}
|
|
}
|
|
z = one / (x * x);
|
|
r =
|
|
p[0] + z * (p[1] +
|
|
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
|
s =
|
|
q[0] + z * (q[1] +
|
|
z * (q[2] +
|
|
z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z))))));
|
|
return (.375 + z * r / s) / x;
|
|
}
|