mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-01 09:20:19 +00:00
505 lines
14 KiB
ArmAsm
505 lines
14 KiB
ArmAsm
/* memcmp/wmemcmp optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2021-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <isa-level.h>
|
|
|
|
#if ISA_SHOULD_BUILD (4)
|
|
|
|
|
|
/* memcmp/wmemcmp is implemented as:
|
|
1. Use ymm vector compares when possible. The only case where
|
|
vector compares is not possible for when size < CHAR_PER_VEC
|
|
and loading from either s1 or s2 would cause a page cross.
|
|
2. For size from 2 to 7 bytes on page cross, load as big endian
|
|
with movbe and bswap to avoid branches.
|
|
3. Use xmm vector compare when size >= 4 bytes for memcmp or
|
|
size >= 8 bytes for wmemcmp.
|
|
4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a
|
|
to check for early mismatches. Only do this if its guaranteed the
|
|
work is not wasted.
|
|
5. If size is 8 * VEC_SIZE or less, unroll the loop.
|
|
6. Compare 4 * VEC_SIZE at a time with the aligned first memory
|
|
area.
|
|
7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less.
|
|
8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less.
|
|
9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less.
|
|
|
|
When possible the implementation tries to optimize for frontend in the
|
|
following ways:
|
|
Throughput:
|
|
1. All code sections that fit are able to run optimally out of the
|
|
LSD.
|
|
2. All code sections that fit are able to run optimally out of the
|
|
DSB
|
|
3. Basic blocks are contained in minimum number of fetch blocks
|
|
necessary.
|
|
|
|
Latency:
|
|
1. Logically connected basic blocks are put in the same
|
|
cache-line.
|
|
2. Logically connected basic blocks that do not fit in the same
|
|
cache-line are put in adjacent lines. This can get beneficial
|
|
L2 spatial prefetching and L1 next-line prefetching. */
|
|
|
|
# include <sysdep.h>
|
|
|
|
# ifndef MEMCMP
|
|
# define MEMCMP __memcmp_evex_movbe
|
|
# endif
|
|
|
|
# ifndef VEC_SIZE
|
|
# include "x86-evex256-vecs.h"
|
|
# endif
|
|
|
|
# ifdef USE_AS_WMEMCMP
|
|
# define VMOVU_MASK vmovdqu32
|
|
# define CHAR_SIZE 4
|
|
# define VPCMP vpcmpd
|
|
# define VPCMPEQ vpcmpeqd
|
|
# define VPTEST vptestmd
|
|
|
|
# define USE_WIDE_CHAR
|
|
# else
|
|
# define VMOVU_MASK vmovdqu8
|
|
# define CHAR_SIZE 1
|
|
# define VPCMP vpcmpub
|
|
# define VPCMPEQ vpcmpeqb
|
|
# define VPTEST vptestmb
|
|
# endif
|
|
|
|
# include "reg-macros.h"
|
|
|
|
# define PAGE_SIZE 4096
|
|
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
|
|
|
|
|
|
/* Warning!
|
|
wmemcmp has to use SIGNED comparison for elements.
|
|
memcmp has to use UNSIGNED comparison for elements.
|
|
*/
|
|
|
|
.section SECTION(.text), "ax", @progbits
|
|
/* Cache align memcmp entry. This allows for much more thorough
|
|
frontend optimization. */
|
|
ENTRY_P2ALIGN (MEMCMP, 6)
|
|
# ifdef __ILP32__
|
|
/* Clear the upper 32 bits. */
|
|
movl %edx, %edx
|
|
# endif
|
|
cmp $CHAR_PER_VEC, %RDX_LP
|
|
/* Fall through for [0, VEC_SIZE] as its the hottest. */
|
|
ja L(more_1x_vec)
|
|
|
|
/* Create mask of bytes that are guaranteed to be valid because
|
|
of length (edx). Using masked movs allows us to skip checks
|
|
for page crosses/zero size. */
|
|
mov $-1, %VRAX
|
|
bzhi %VRDX, %VRAX, %VRAX
|
|
/* NB: A `jz` might be useful here. Page-faults that are
|
|
invalidated by predicate execution (the evex mask) can be
|
|
very slow. The expectation is this is not the norm so and
|
|
"most" code will not regularly call 'memcmp' with length = 0
|
|
and memory that is not wired up. */
|
|
KMOV %VRAX, %k2
|
|
|
|
|
|
|
|
/* Safe to load full ymm with mask. */
|
|
VMOVU_MASK (%rsi), %VMM(2){%k2}{z}
|
|
/* Slightly different method for VEC_SIZE == 64 to save a bit of
|
|
code size. This allows us to fit L(return_vec_0) entirely in
|
|
the first cache line. */
|
|
# if VEC_SIZE == 64
|
|
VPCMPEQ (%rdi), %VMM(2), %k1{%k2}
|
|
KMOV %k1, %VRCX
|
|
sub %VRCX, %VRAX
|
|
# else
|
|
VPCMP $4, (%rdi), %VMM(2), %k1{%k2}
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
# endif
|
|
jnz L(return_vec_0)
|
|
ret
|
|
|
|
.p2align 4,, 11
|
|
L(return_vec_0):
|
|
bsf %VRAX, %VRAX
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (%rsi, %rax, CHAR_SIZE), %ecx
|
|
/* NB: no partial register stall here because xorl zero idiom
|
|
above. */
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (%rsi, %rax), %ecx
|
|
# if VEC_SIZE == 64
|
|
movb (%rdi, %rax), %al
|
|
# else
|
|
movzbl (%rdi, %rax), %eax
|
|
# endif
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 11
|
|
L(more_1x_vec):
|
|
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
|
|
VMOVU (%rsi), %VMM(1)
|
|
/* Use compare not equals to directly check for mismatch. */
|
|
VPCMP $4, (%rdi), %VMM(1), %k1
|
|
KMOV %k1, %VRAX
|
|
/* NB: eax must be destination register if going to
|
|
L(return_vec_[0,2]). For L(return_vec_3) destination
|
|
register must be ecx. */
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_0)
|
|
|
|
cmpq $(CHAR_PER_VEC * 2), %rdx
|
|
jbe L(last_1x_vec)
|
|
|
|
/* Check second VEC no matter what. */
|
|
VMOVU VEC_SIZE(%rsi), %VMM(2)
|
|
VPCMP $4, VEC_SIZE(%rdi), %VMM(2), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_1)
|
|
|
|
/* Less than 4 * VEC. */
|
|
cmpq $(CHAR_PER_VEC * 4), %rdx
|
|
jbe L(last_2x_vec)
|
|
|
|
/* Check third and fourth VEC no matter what. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
|
|
VPCMP $4, (VEC_SIZE * 2)(%rdi), %VMM(3), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_2)
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
|
|
VPCMP $4, (VEC_SIZE * 3)(%rdi), %VMM(4), %k1
|
|
KMOV %k1, %VRCX
|
|
test %VRCX, %VRCX
|
|
jnz L(return_vec_3)
|
|
|
|
/* Go to 4x VEC loop. */
|
|
cmpq $(CHAR_PER_VEC * 8), %rdx
|
|
ja L(more_8x_vec)
|
|
|
|
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
|
|
branches. */
|
|
|
|
/* Load first two VEC from s2 before adjusting addresses. */
|
|
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
|
|
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %VMM(2)
|
|
leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi
|
|
leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi
|
|
|
|
/* Wait to load from s1 until addressed adjust due to
|
|
unlamination of microfusion with complex address mode. */
|
|
|
|
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
|
|
will have some 1s. */
|
|
vpxorq (%rdi), %VMM(1), %VMM(1)
|
|
vpxorq (VEC_SIZE)(%rdi), %VMM(2), %VMM(2)
|
|
|
|
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
|
|
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
|
|
/* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with VEC(4) while
|
|
oring with VEC(1). Result is stored in VEC(4). */
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
|
|
|
|
/* Or together VEC(2), VEC(3), and VEC(4) into VEC(4). */
|
|
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
|
|
|
|
/* Test VEC(4) against itself. Store any CHAR mismatches in k1.
|
|
*/
|
|
VPTEST %VMM(4), %VMM(4), %k1
|
|
/* k1 must go to ecx for L(return_vec_0_1_2_3). */
|
|
KMOV %k1, %VRCX
|
|
test %VRCX, %VRCX
|
|
jnz L(return_vec_0_1_2_3)
|
|
/* NB: eax must be zero to reach here. */
|
|
ret
|
|
|
|
|
|
.p2align 4,, 9
|
|
L(8x_end_return_vec_0_1_2_3):
|
|
movq %rdx, %rdi
|
|
L(8x_return_vec_0_1_2_3):
|
|
/* L(loop_4x_vec) leaves result in `k1` for VEC_SIZE == 64. */
|
|
# if VEC_SIZE == 64
|
|
KMOV %k1, %VRCX
|
|
# endif
|
|
addq %rdi, %rsi
|
|
L(return_vec_0_1_2_3):
|
|
VPTEST %VMM(1), %VMM(1), %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_0)
|
|
|
|
VPTEST %VMM(2), %VMM(2), %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_1)
|
|
|
|
VPTEST %VMM(3), %VMM(3), %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_2)
|
|
.p2align 4,, 2
|
|
L(return_vec_3):
|
|
/* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one
|
|
fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache
|
|
line. */
|
|
bsf %VRCX, %VRCX
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax
|
|
movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
|
|
.p2align 4,, 8
|
|
L(return_vec_1):
|
|
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one
|
|
fetch block. */
|
|
bsf %VRAX, %VRAX
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl VEC_SIZE(%rsi, %rax), %ecx
|
|
movzbl VEC_SIZE(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 7
|
|
L(return_vec_2):
|
|
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one
|
|
fetch block. */
|
|
bsf %VRAX, %VRAX
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx
|
|
movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(more_8x_vec):
|
|
/* Set end of s1 in rdx. */
|
|
leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx
|
|
/* rsi stores s2 - s1. This allows loop to only update one
|
|
pointer. */
|
|
subq %rdi, %rsi
|
|
/* Align s1 pointer. */
|
|
andq $-VEC_SIZE, %rdi
|
|
/* Adjust because first 4x vec where check already. */
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
VMOVU (%rsi, %rdi), %VMM(1)
|
|
vpxorq (%rdi), %VMM(1), %VMM(1)
|
|
VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2)
|
|
vpxorq VEC_SIZE(%rdi), %VMM(2), %VMM(2)
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3)
|
|
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4)
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
|
|
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
|
|
VPTEST %VMM(4), %VMM(4), %k1
|
|
/* If VEC_SIZE == 64 just branch with KTEST. We have free port0
|
|
space and it allows the loop to fit in 2x cache lines
|
|
instead of 3. */
|
|
# if VEC_SIZE == 64
|
|
KTEST %k1, %k1
|
|
# else
|
|
KMOV %k1, %VRCX
|
|
test %VRCX, %VRCX
|
|
# endif
|
|
jnz L(8x_return_vec_0_1_2_3)
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
cmpq %rdx, %rdi
|
|
jb L(loop_4x_vec)
|
|
subq %rdx, %rdi
|
|
/* rdi has 4 * VEC_SIZE - remaining length. */
|
|
cmpl $(VEC_SIZE * 3), %edi
|
|
jge L(8x_last_1x_vec)
|
|
/* Load regardless of branch. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3)
|
|
|
|
/* Separate logic as we can only use testb for VEC_SIZE == 64.
|
|
*/
|
|
# if VEC_SIZE == 64
|
|
testb %dil, %dil
|
|
js L(8x_last_2x_vec)
|
|
# else
|
|
cmpl $(VEC_SIZE * 2), %edi
|
|
jge L(8x_last_2x_vec)
|
|
# endif
|
|
|
|
vpxorq (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(3)
|
|
|
|
VMOVU (%rsi, %rdx), %VMM(1)
|
|
vpxorq (%rdx), %VMM(1), %VMM(1)
|
|
|
|
VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2)
|
|
vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2)
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4)
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %VMM(1), %VMM(4)
|
|
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
|
|
VPTEST %VMM(4), %VMM(4), %k1
|
|
/* L(8x_end_return_vec_0_1_2_3) expects bitmask to still be in
|
|
`k1` if VEC_SIZE == 64. */
|
|
# if VEC_SIZE == 64
|
|
KTEST %k1, %k1
|
|
# else
|
|
KMOV %k1, %VRCX
|
|
test %VRCX, %VRCX
|
|
# endif
|
|
jnz L(8x_end_return_vec_0_1_2_3)
|
|
/* NB: eax must be zero to reach here. */
|
|
ret
|
|
|
|
/* Only entry is from L(more_8x_vec). */
|
|
.p2align 4,, 6
|
|
L(8x_last_2x_vec):
|
|
VPCMP $4, (VEC_SIZE * 2)(%rdx), %VMM(3), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(8x_return_vec_2)
|
|
.p2align 4,, 5
|
|
L(8x_last_1x_vec):
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(1)
|
|
VPCMP $4, (VEC_SIZE * 3)(%rdx), %VMM(1), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(8x_return_vec_3)
|
|
ret
|
|
|
|
/* Not ideally aligned (at offset +9 bytes in fetch block) but
|
|
not aligning keeps it in the same cache line as
|
|
L(8x_last_1x/2x_vec) so likely worth it. As well, saves code
|
|
size. */
|
|
.p2align 4,, 4
|
|
L(8x_return_vec_2):
|
|
subq $VEC_SIZE, %rdx
|
|
L(8x_return_vec_3):
|
|
bsf %VRAX, %VRAX
|
|
# ifdef USE_AS_WMEMCMP
|
|
leaq (%rdx, %rax, CHAR_SIZE), %rax
|
|
movl (VEC_SIZE * 3)(%rax), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
addq %rdx, %rax
|
|
movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx
|
|
movzbl (VEC_SIZE * 3)(%rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(last_2x_vec):
|
|
/* Check second to last VEC. */
|
|
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
|
|
VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_1_end)
|
|
|
|
/* Check last VEC. */
|
|
.p2align 4,, 8
|
|
L(last_1x_vec):
|
|
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
|
|
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
|
|
KMOV %k1, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(return_vec_0_end)
|
|
ret
|
|
|
|
|
|
/* Don't fully align. Takes 2-fetch blocks either way and
|
|
aligning will cause code to spill into another cacheline.
|
|
*/
|
|
.p2align 4,, 3
|
|
L(return_vec_1_end):
|
|
/* Use bsf to save code size. This is necessary to have
|
|
L(one_or_less) fit in aligning bytes between. */
|
|
bsf %VRAX, %VRAX
|
|
addl %edx, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx
|
|
movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 2
|
|
/* Don't align. Takes 2-fetch blocks either way and aligning
|
|
will cause code to spill into another cacheline. */
|
|
L(return_vec_0_end):
|
|
bsf %VRAX, %VRAX
|
|
addl %edx, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl -VEC_SIZE(%rsi, %rax), %ecx
|
|
movzbl -VEC_SIZE(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
/* evex256: 2-byte until next cache line. evex512: 46-bytes
|
|
until next cache line. */
|
|
END (MEMCMP)
|
|
#endif
|