glibc/nptl/pthread_mutex_lock.c
Ulrich Drepper 5bd8a24966 * pthreadP.h (PTHREAD_ROBUST_MUTEX_PSHARED): Define.
* pthread_mutex_lock.c: Use it instead of PTHREAD_MUTEX_PSHARED when
	dealing with robust mutexes.
	* pthread_mutex_timedlock.c: Likewise.
	* pthread_mutex_trylock.c: Likewise.
	* pthread_mutex_unlock.c: Likewise.
	* sysdeps/unix/sysv/linux/pthread_mutex_cond_lock.c: Likewise.

2007-08-06  Jakub Jelinek  <jakub@redhat.com>

	* pthreadP.h (PTHREAD_MUTEX_PSHARED_BIT): Define.
	(PTHREAD_MUTEX_TYPE): Mask __kind with 127.
	(PTHREAD_MUTEX_PSHARED): Define.
	* pthread_mutex_init.c (__pthread_mutex_init): Set
	PTHREAD_MUTEX_PSHARED_BIT for pshared or robust
	mutexes.
	* pthread_mutex_lock.c (LLL_MUTEX_LOCK): Take mutex as argument
	instead of its __data.__lock field, pass PTHREAD_MUTEX_PSHARED
	as second argument to lll_lock.
	(LLL_MUTEX_TRYLOCK): Take mutex as argument
	instead of its __data.__lock field.
	(LLL_ROBUST_MUTEX_LOCK): Take mutex as argument instead of its
	__data.__lock field, pass PTHREAD_MUTEX_PSHARED as second argument
	to lll_robust_lock.
	(__pthread_mutex_lock): Update LLL_MUTEX_LOCK, LLL_MUTEX_TRYLOCK,
	LLL_ROBUST_MUTEX_LOCK users, use PTHREAD_MUTEX_TYPE (mutex)
	instead of mutex->__data.__kind directly, pass
	PTHREAD_MUTEX_PSHARED (mutex) to lll_unlock and lll_futex_wait.
	* pthread_mutex_trylock.c (__pthread_mutex_trylock): Use
	PTHREAD_MUTEX_TYPE (mutex) instead of mutex->__data.__kind
	directly, pass PTHREAD_MUTEX_PSHARED (mutex) to lll_unlock.
	(pthread_mutex_timedlock): Pass PTHREAD_MUTEX_PSHARED (mutex)
	to lll_timedlock, lll_robust_timedlock, lll_unlock and
	lll_futex_timed_wait.  Use PTHREAD_MUTEX_TYPE (mutex) instead
	of mutex->__data.__kind directly.
	* pthread_mutex_timedlock.c (pthread_mutex_timedlock): Pass
	PTHREAD_MUTEX_PSHARED (mutex) to lll_timedlock,
	lll_robust_timedlock, lll_unlock and lll_futex_timed_wait.  Use
	PTHREAD_MUTEX_TYPE (mutex) instead of mutex->__data.__kind directly.
	* pthread_mutex_unlock.c (__pthread_mutex_unlock_usercnt): Pass
	PTHREAD_MUTEX_PSHARED (mutex) to lll_unlock, lll_robust_unlock
	and lll_futex_wake.
	* pthread_mutex_setprioceiling.c (pthread_mutex_setprioceiling): Pass
	PTHREAD_MUTEX_PSHARED (mutex) to lll_futex_wait and lll_futex_wake.
	Use PTHREAD_MUTEX_TYPE (mutex) instead of mutex->__data.__kind
	directly.
	* sysdeps/unix/sysv/linux/pthread_mutex_cond_lock.c (LLL_MUTEX_LOCK):
	Take mutex as argument instead of its __data.__lock field, pass
	PTHREAD_MUTEX_PSHARED as second argument to lll_cond_lock.
	(LLL_MUTEX_TRYLOCK): Take mutex as argument instead of its
	__data.__lock field.
	(LLL_ROBUST_MUTEX_LOCK): Take mutex as argument instead of its
	__data.__lock field, pass PTHREAD_MUTEX_PSHARED as second argument
	to lll_robust_cond_lock.
	* pthread_cond_broadcast.c (__pthread_cond_broadcast): Add pshared
	variable, pass it to lll_lock, lll_unlock, lll_futex_requeue and
	lll_futex_wake.  Don't use lll_futex_requeue if dependent mutex
	has PTHREAD_MUTEX_PSHARED_BIT bit set in its __data.__kind.
	* pthread_cond_destroy.c (__pthread_cond_destroy): Add pshared
	variable, pass it to lll_lock, lll_unlock, lll_futex_wake and
	lll_futex_wait.
	* pthread_cond_signal.c (__pthread_cond_signal): Add pshared
	variable, pass it to lll_lock, lll_unlock, lll_futex_wake_unlock and
	lll_futex_wake.
	* pthread_cond_timedwait.c (__pthread_cond_wait): Add
	pshared variable, pass it to lll_lock, lll_unlock,
	lll_futex_timedwait and lll_futex_wake.
	* pthread_cond_wait.c (__condvar_cleanup, __pthread_cond_wait): Add
	pshared variable, pass it to lll_lock, lll_unlock, lll_futex_wait
	and lll_futex_wake.
	* sysdeps/unix/sysv/linux/alpha/lowlevellock.h (lll_futex_requeue,
	lll_futex_wake_unlock): Add private argument, use __lll_private_flag
	macro.
	* sysdeps/unix/sysv/linux/ia64/lowlevellock.h (lll_futex_requeue,
	lll_futex_wake_unlock): Likewise.
	* sysdeps/unix/sysv/linux/powerpc/lowlevellock.h (lll_futex_requeue):
	Likewise.
	* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (lll_futex_requeue,
	lll_futex_wake_unlock): Likewise.
	* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h (lll_futex_requeue):
	Likewise.
	* sysdeps/unix/sysv/linux/s390/lowlevellock.h (lll_futex_requeue,
	lll_futex_wake_unlock): Likewise.
	(lll_futex_wake): Fix a typo.
	* sysdeps/unix/sysv/linux/pthread-pi-defines.sym (PS_BIT): Add.
	* sysdeps/unix/sysv/linux/x86_64/pthread_cond_broadcast.S
	(__pthread_cond_broadcast): Pass LLL_PRIVATE to lll_* and or
	FUTEX_PRIVATE_FLAG into SYS_futex op if cv is process private.
	Don't use FUTEX_CMP_REQUEUE if dep_mutex is not process private.
	* sysdeps/unix/sysv/linux/x86_64/pthread_cond_signal.S
	(__pthread_cond_signal): Pass LLL_PRIVATE to lll_* and or
	FUTEX_PRIVATE_FLAG into SYS_futex op if cv is process private.
	* sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S
	(__pthread_cond_timedwait): Likewise.
	* sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:
	(__condvar_cleanup, __pthread_cond_wait): Likewise.
2007-08-11 18:50:51 +00:00

447 lines
12 KiB
C

/* Copyright (C) 2002,2003,2004,2005,2006,2007 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <not-cancel.h>
#include "pthreadP.h"
#include <lowlevellock.h>
#ifndef LLL_MUTEX_LOCK
# define LLL_MUTEX_LOCK(mutex) \
lll_lock ((mutex)->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex))
# define LLL_MUTEX_TRYLOCK(mutex) \
lll_trylock ((mutex)->__data.__lock)
# define LLL_ROBUST_MUTEX_LOCK(mutex, id) \
lll_robust_lock ((mutex)->__data.__lock, id, \
PTHREAD_ROBUST_MUTEX_PSHARED (mutex))
#endif
int
__pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;
{
assert (sizeof (mutex->__size) >= sizeof (mutex->__data));
int oldval;
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
int retval = 0;
switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex),
PTHREAD_MUTEX_TIMED_NP))
{
/* Recursive mutex. */
case PTHREAD_MUTEX_RECURSIVE_NP:
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
/* We have to get the mutex. */
LLL_MUTEX_LOCK (mutex);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
break;
/* Error checking mutex. */
case PTHREAD_MUTEX_ERRORCHECK_NP:
/* Check whether we already hold the mutex. */
if (__builtin_expect (mutex->__data.__owner == id, 0))
return EDEADLK;
/* FALLTHROUGH */
case PTHREAD_MUTEX_TIMED_NP:
simple:
/* Normal mutex. */
LLL_MUTEX_LOCK (mutex);
assert (mutex->__data.__owner == 0);
break;
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (! __is_smp)
goto simple;
if (LLL_MUTEX_TRYLOCK (mutex) != 0)
{
int cnt = 0;
int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
LLL_MUTEX_LOCK (mutex);
break;
}
#ifdef BUSY_WAIT_NOP
BUSY_WAIT_NOP;
#endif
}
while (LLL_MUTEX_TRYLOCK (mutex) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
assert (mutex->__data.__owner == 0);
break;
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
oldval = mutex->__data.__lock;
do
{
again:
if ((oldval & FUTEX_OWNER_DIED) != 0)
{
/* The previous owner died. Try locking the mutex. */
int newval = id;
#ifdef NO_INCR
newval |= FUTEX_WAITERS;
#else
newval |= (oldval & FUTEX_WAITERS);
#endif
newval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, oldval);
if (newval != oldval)
{
oldval = newval;
goto again;
}
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old
owner has to be discounted. If we are not supposed
to increment __nusers we actually have to decrement
it here. */
#ifdef NO_INCR
--mutex->__data.__nusers;
#endif
return EOWNERDEAD;
}
/* Check whether we already hold the mutex. */
if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
{
int kind = PTHREAD_MUTEX_TYPE (mutex);
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
oldval = LLL_ROBUST_MUTEX_LOCK (mutex, id);
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
lll_unlock (mutex->__data.__lock,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
}
while ((oldval & FUTEX_OWNER_DIED) != 0);
mutex->__data.__count = 1;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
if (robust)
/* Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
int newval = id;
#ifdef NO_INCR
newval |= FUTEX_WAITERS;
#endif
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, 0);
if (oldval != 0)
{
/* The mutex is locked. The kernel will now take care of
everything. */
INTERNAL_SYSCALL_DECL (__err);
int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
FUTEX_LOCK_PI, 1, 0);
if (INTERNAL_SYSCALL_ERROR_P (e, __err)
&& (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
|| INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK))
{
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
/* ESRCH can happen only for non-robust PI mutexes where
the owner of the lock died. */
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH || !robust);
/* Delay the thread indefinitely. */
while (1)
pause_not_cancel ();
}
oldval = mutex->__data.__lock;
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
}
if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0))
{
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old owner
has to be discounted. If we are not supposed to
increment __nusers we actually have to decrement it here. */
#ifdef NO_INCR
--mutex->__data.__nusers;
#endif
return EOWNERDEAD;
}
if (robust
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
INTERNAL_SYSCALL_DECL (__err);
INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
FUTEX_UNLOCK_PI, 0, 0);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
if (robust)
{
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
}
}
break;
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
return EDEADLK;
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
int oldprio = -1, ceilval;
do
{
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
if (__pthread_current_priority () > ceiling)
{
if (oldprio != -1)
__pthread_tpp_change_priority (oldprio, -1);
return EINVAL;
}
retval = __pthread_tpp_change_priority (oldprio, ceiling);
if (retval)
return retval;
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
oldprio = ceiling;
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
#ifdef NO_INCR
ceilval | 2,
#else
ceilval | 1,
#endif
ceilval);
if (oldval == ceilval)
break;
do
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2,
ceilval | 1);
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
break;
if (oldval != ceilval)
lll_futex_wait (&mutex->__data.__lock, ceilval | 2,
PTHREAD_MUTEX_PSHARED (mutex));
}
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2, ceilval)
!= ceilval);
}
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
}
break;
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
/* Record the ownership. */
mutex->__data.__owner = id;
#ifndef NO_INCR
++mutex->__data.__nusers;
#endif
return retval;
}
#ifndef __pthread_mutex_lock
strong_alias (__pthread_mutex_lock, pthread_mutex_lock)
strong_alias (__pthread_mutex_lock, __pthread_mutex_lock_internal)
#endif