glibc/soft-fp/double.h
Joseph Myers 04277e02d7 Update copyright dates with scripts/update-copyrights.
* All files with FSF copyright notices: Update copyright dates
	using scripts/update-copyrights.
	* locale/programs/charmap-kw.h: Regenerated.
	* locale/programs/locfile-kw.h: Likewise.
2019-01-01 00:11:28 +00:00

324 lines
9.5 KiB
C

/* Software floating-point emulation.
Definitions for IEEE Double Precision
Copyright (C) 1997-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
In addition to the permissions in the GNU Lesser General Public
License, the Free Software Foundation gives you unlimited
permission to link the compiled version of this file into
combinations with other programs, and to distribute those
combinations without any restriction coming from the use of this
file. (The Lesser General Public License restrictions do apply in
other respects; for example, they cover modification of the file,
and distribution when not linked into a combine executable.)
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef SOFT_FP_DOUBLE_H
#define SOFT_FP_DOUBLE_H 1
#if _FP_W_TYPE_SIZE < 32
# error "Here's a nickel kid. Go buy yourself a real computer."
#endif
#if _FP_W_TYPE_SIZE < 64
# define _FP_FRACTBITS_D (2 * _FP_W_TYPE_SIZE)
# define _FP_FRACTBITS_DW_D (4 * _FP_W_TYPE_SIZE)
#else
# define _FP_FRACTBITS_D _FP_W_TYPE_SIZE
# define _FP_FRACTBITS_DW_D (2 * _FP_W_TYPE_SIZE)
#endif
#define _FP_FRACBITS_D 53
#define _FP_FRACXBITS_D (_FP_FRACTBITS_D - _FP_FRACBITS_D)
#define _FP_WFRACBITS_D (_FP_WORKBITS + _FP_FRACBITS_D)
#define _FP_WFRACXBITS_D (_FP_FRACTBITS_D - _FP_WFRACBITS_D)
#define _FP_EXPBITS_D 11
#define _FP_EXPBIAS_D 1023
#define _FP_EXPMAX_D 2047
#define _FP_QNANBIT_D \
((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-2) % _FP_W_TYPE_SIZE)
#define _FP_QNANBIT_SH_D \
((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_D \
((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-1) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_SH_D \
((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
#define _FP_OVERFLOW_D \
((_FP_W_TYPE) 1 << _FP_WFRACBITS_D % _FP_W_TYPE_SIZE)
#define _FP_WFRACBITS_DW_D (2 * _FP_WFRACBITS_D)
#define _FP_WFRACXBITS_DW_D (_FP_FRACTBITS_DW_D - _FP_WFRACBITS_DW_D)
#define _FP_HIGHBIT_DW_D \
((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_D - 1) % _FP_W_TYPE_SIZE)
typedef float DFtype __attribute__ ((mode (DF)));
#if _FP_W_TYPE_SIZE < 64
union _FP_UNION_D
{
DFtype flt;
struct _FP_STRUCT_LAYOUT
{
# if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned frac0 : _FP_W_TYPE_SIZE;
# else
unsigned frac0 : _FP_W_TYPE_SIZE;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
# endif
} bits;
};
# define FP_DECL_D(X) _FP_DECL (2, X)
# define FP_UNPACK_RAW_D(X, val) _FP_UNPACK_RAW_2 (D, X, (val))
# define FP_UNPACK_RAW_DP(X, val) _FP_UNPACK_RAW_2_P (D, X, (val))
# define FP_PACK_RAW_D(val, X) _FP_PACK_RAW_2 (D, (val), X)
# define FP_PACK_RAW_DP(val, X) \
do \
{ \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P (D, (val), X); \
} \
while (0)
# define FP_UNPACK_D(X, val) \
do \
{ \
_FP_UNPACK_RAW_2 (D, X, (val)); \
_FP_UNPACK_CANONICAL (D, 2, X); \
} \
while (0)
# define FP_UNPACK_DP(X, val) \
do \
{ \
_FP_UNPACK_RAW_2_P (D, X, (val)); \
_FP_UNPACK_CANONICAL (D, 2, X); \
} \
while (0)
# define FP_UNPACK_SEMIRAW_D(X, val) \
do \
{ \
_FP_UNPACK_RAW_2 (D, X, (val)); \
_FP_UNPACK_SEMIRAW (D, 2, X); \
} \
while (0)
# define FP_UNPACK_SEMIRAW_DP(X, val) \
do \
{ \
_FP_UNPACK_RAW_2_P (D, X, (val)); \
_FP_UNPACK_SEMIRAW (D, 2, X); \
} \
while (0)
# define FP_PACK_D(val, X) \
do \
{ \
_FP_PACK_CANONICAL (D, 2, X); \
_FP_PACK_RAW_2 (D, (val), X); \
} \
while (0)
# define FP_PACK_DP(val, X) \
do \
{ \
_FP_PACK_CANONICAL (D, 2, X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P (D, (val), X); \
} \
while (0)
# define FP_PACK_SEMIRAW_D(val, X) \
do \
{ \
_FP_PACK_SEMIRAW (D, 2, X); \
_FP_PACK_RAW_2 (D, (val), X); \
} \
while (0)
# define FP_PACK_SEMIRAW_DP(val, X) \
do \
{ \
_FP_PACK_SEMIRAW (D, 2, X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P (D, (val), X); \
} \
while (0)
# define FP_ISSIGNAN_D(X) _FP_ISSIGNAN (D, 2, X)
# define FP_NEG_D(R, X) _FP_NEG (D, 2, R, X)
# define FP_ADD_D(R, X, Y) _FP_ADD (D, 2, R, X, Y)
# define FP_SUB_D(R, X, Y) _FP_SUB (D, 2, R, X, Y)
# define FP_MUL_D(R, X, Y) _FP_MUL (D, 2, R, X, Y)
# define FP_DIV_D(R, X, Y) _FP_DIV (D, 2, R, X, Y)
# define FP_SQRT_D(R, X) _FP_SQRT (D, 2, R, X)
# define _FP_SQRT_MEAT_D(R, S, T, X, Q) _FP_SQRT_MEAT_2 (R, S, T, X, (Q))
# define FP_FMA_D(R, X, Y, Z) _FP_FMA (D, 2, 4, R, X, Y, Z)
# define FP_CMP_D(r, X, Y, un, ex) _FP_CMP (D, 2, (r), X, Y, (un), (ex))
# define FP_CMP_EQ_D(r, X, Y, ex) _FP_CMP_EQ (D, 2, (r), X, Y, (ex))
# define FP_CMP_UNORD_D(r, X, Y, ex) _FP_CMP_UNORD (D, 2, (r), X, Y, (ex))
# define FP_TO_INT_D(r, X, rsz, rsg) _FP_TO_INT (D, 2, (r), X, (rsz), (rsg))
# define FP_TO_INT_ROUND_D(r, X, rsz, rsg) \
_FP_TO_INT_ROUND (D, 2, (r), X, (rsz), (rsg))
# define FP_FROM_INT_D(X, r, rs, rt) _FP_FROM_INT (D, 2, X, (r), (rs), rt)
# define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_2 (X)
# define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_2 (X)
# define _FP_FRAC_HIGH_DW_D(X) _FP_FRAC_HIGH_4 (X)
#else
union _FP_UNION_D
{
DFtype flt;
struct _FP_STRUCT_LAYOUT
{
# if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
_FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
# else
_FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
# endif
} bits;
};
# define FP_DECL_D(X) _FP_DECL (1, X)
# define FP_UNPACK_RAW_D(X, val) _FP_UNPACK_RAW_1 (D, X, (val))
# define FP_UNPACK_RAW_DP(X, val) _FP_UNPACK_RAW_1_P (D, X, (val))
# define FP_PACK_RAW_D(val, X) _FP_PACK_RAW_1 (D, (val), X)
# define FP_PACK_RAW_DP(val, X) \
do \
{ \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P (D, (val), X); \
} \
while (0)
# define FP_UNPACK_D(X, val) \
do \
{ \
_FP_UNPACK_RAW_1 (D, X, (val)); \
_FP_UNPACK_CANONICAL (D, 1, X); \
} \
while (0)
# define FP_UNPACK_DP(X, val) \
do \
{ \
_FP_UNPACK_RAW_1_P (D, X, (val)); \
_FP_UNPACK_CANONICAL (D, 1, X); \
} \
while (0)
# define FP_UNPACK_SEMIRAW_D(X, val) \
do \
{ \
_FP_UNPACK_RAW_1 (D, X, (val)); \
_FP_UNPACK_SEMIRAW (D, 1, X); \
} \
while (0)
# define FP_UNPACK_SEMIRAW_DP(X, val) \
do \
{ \
_FP_UNPACK_RAW_1_P (D, X, (val)); \
_FP_UNPACK_SEMIRAW (D, 1, X); \
} \
while (0)
# define FP_PACK_D(val, X) \
do \
{ \
_FP_PACK_CANONICAL (D, 1, X); \
_FP_PACK_RAW_1 (D, (val), X); \
} \
while (0)
# define FP_PACK_DP(val, X) \
do \
{ \
_FP_PACK_CANONICAL (D, 1, X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P (D, (val), X); \
} \
while (0)
# define FP_PACK_SEMIRAW_D(val, X) \
do \
{ \
_FP_PACK_SEMIRAW (D, 1, X); \
_FP_PACK_RAW_1 (D, (val), X); \
} \
while (0)
# define FP_PACK_SEMIRAW_DP(val, X) \
do \
{ \
_FP_PACK_SEMIRAW (D, 1, X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P (D, (val), X); \
} \
while (0)
# define FP_ISSIGNAN_D(X) _FP_ISSIGNAN (D, 1, X)
# define FP_NEG_D(R, X) _FP_NEG (D, 1, R, X)
# define FP_ADD_D(R, X, Y) _FP_ADD (D, 1, R, X, Y)
# define FP_SUB_D(R, X, Y) _FP_SUB (D, 1, R, X, Y)
# define FP_MUL_D(R, X, Y) _FP_MUL (D, 1, R, X, Y)
# define FP_DIV_D(R, X, Y) _FP_DIV (D, 1, R, X, Y)
# define FP_SQRT_D(R, X) _FP_SQRT (D, 1, R, X)
# define _FP_SQRT_MEAT_D(R, S, T, X, Q) _FP_SQRT_MEAT_1 (R, S, T, X, (Q))
# define FP_FMA_D(R, X, Y, Z) _FP_FMA (D, 1, 2, R, X, Y, Z)
/* The implementation of _FP_MUL_D and _FP_DIV_D should be chosen by
the target machine. */
# define FP_CMP_D(r, X, Y, un, ex) _FP_CMP (D, 1, (r), X, Y, (un), (ex))
# define FP_CMP_EQ_D(r, X, Y, ex) _FP_CMP_EQ (D, 1, (r), X, Y, (ex))
# define FP_CMP_UNORD_D(r, X, Y, ex) _FP_CMP_UNORD (D, 1, (r), X, Y, (ex))
# define FP_TO_INT_D(r, X, rsz, rsg) _FP_TO_INT (D, 1, (r), X, (rsz), (rsg))
# define FP_TO_INT_ROUND_D(r, X, rsz, rsg) \
_FP_TO_INT_ROUND (D, 1, (r), X, (rsz), (rsg))
# define FP_FROM_INT_D(X, r, rs, rt) _FP_FROM_INT (D, 1, X, (r), (rs), rt)
# define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_1 (X)
# define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_1 (X)
# define _FP_FRAC_HIGH_DW_D(X) _FP_FRAC_HIGH_2 (X)
#endif /* W_TYPE_SIZE < 64 */
#endif /* !SOFT_FP_DOUBLE_H */