mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-01 23:40:22 +00:00
5da9d1244a
definitions... * sysdeps/m68k/fpu/mathimpl.h: ... here. New file. * sysdeps/m68k/fpu/e_acos.c: Include "mathimpl.h". * sysdeps/m68k/fpu/e_atan2.c: Likewise. * sysdeps/m68k/fpu/e_fmod.c: Likewise. * sysdeps/m68k/fpu/e_pow.c: Likewise. * sysdeps/m68k/fpu/e_scalb.c: Likewise. * sysdeps/m68k/fpu/s_ccos.c: Likewise. * sysdeps/m68k/fpu/s_ccosh.c: Likewise. * sysdeps/m68k/fpu/s_cexp.c: Likewise. * sysdeps/m68k/fpu/s_csin.c: Likewise. * sysdeps/m68k/fpu/s_csinh.c: Likewise. * sysdeps/m68k/fpu/s_ilogb.c: Likewise. * sysdeps/m68k/fpu/s_llrint.c: Likewise. * sysdeps/m68k/fpu/s_llrintf.c: Likewise. * sysdeps/m68k/fpu/s_llrintl.c: Likewise. * sysdeps/m68k/fpu/s_modf.c: Likewise.
72 lines
2.2 KiB
C
72 lines
2.2 KiB
C
/* Complex sine hyperbole function. m68k fpu version
|
|
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include "mathimpl.h"
|
|
|
|
#ifndef SUFF
|
|
#define SUFF
|
|
#endif
|
|
#ifndef float_type
|
|
#define float_type double
|
|
#endif
|
|
|
|
#define CONCATX(a,b) __CONCAT(a,b)
|
|
#define s(name) CONCATX(name,SUFF)
|
|
#define m81(func) __m81_u(s(func))
|
|
|
|
__complex__ float_type
|
|
s(__csinh) (__complex__ float_type x)
|
|
{
|
|
__complex__ float_type retval;
|
|
unsigned long ix_cond;
|
|
|
|
ix_cond = __m81_test (__imag__ x);
|
|
|
|
if ((ix_cond & (__M81_COND_INF|__M81_COND_NAN)) == 0)
|
|
{
|
|
/* Imaginary part is finite. */
|
|
float_type sin_ix, cos_ix;
|
|
|
|
__asm ("fsincos%.x %2,%1:%0" : "=f" (sin_ix), "=f" (cos_ix)
|
|
: "f" (__imag__ x));
|
|
__real__ retval = cos_ix * m81(__ieee754_sinh) (__real__ x);
|
|
if (ix_cond & __M81_COND_ZERO)
|
|
__imag__ retval = __imag__ x;
|
|
else
|
|
__imag__ retval = sin_ix * m81(__ieee754_cosh) (__real__ x);
|
|
}
|
|
else
|
|
{
|
|
unsigned long rx_cond = __m81_test (__real__ x);
|
|
|
|
__imag__ retval = __imag__ x - __imag__ x;
|
|
if (rx_cond & (__M81_COND_ZERO|__M81_COND_INF|__M81_COND_NAN))
|
|
__real__ retval = __real__ x;
|
|
else
|
|
__real__ retval = __imag__ retval;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
#define weak_aliasx(a,b) weak_alias(a,b)
|
|
weak_aliasx (s(__csinh), s(csinh))
|