glibc/sysdeps/x86_64/multiarch/strchr-evex.S
Noah Goldstein 7f3e7c262c x86: Optimize strchr-evex.S
No bug. This commit optimizes strchr-evex.S. The optimizations are
mostly small things such as save an ALU in the alignment process,
saving a few instructions in the loop return. The one significant
change is saving 2 instructions in the 4x loop. test-strchr,
test-strchrnul, test-wcschr, and test-wcschrnul are all passing.

Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
2021-04-25 10:04:39 -07:00

380 lines
9.7 KiB
ArmAsm

/* strchr/strchrnul optimized with 256-bit EVEX instructions.
Copyright (C) 2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#if IS_IN (libc)
# include <sysdep.h>
# ifndef STRCHR
# define STRCHR __strchr_evex
# endif
# define VMOVU vmovdqu64
# define VMOVA vmovdqa64
# ifdef USE_AS_WCSCHR
# define VPBROADCAST vpbroadcastd
# define VPCMP vpcmpd
# define VPMINU vpminud
# define CHAR_REG esi
# define SHIFT_REG ecx
# define CHAR_SIZE 4
# else
# define VPBROADCAST vpbroadcastb
# define VPCMP vpcmpb
# define VPMINU vpminub
# define CHAR_REG sil
# define SHIFT_REG edx
# define CHAR_SIZE 1
# endif
# define XMMZERO xmm16
# define YMMZERO ymm16
# define YMM0 ymm17
# define YMM1 ymm18
# define YMM2 ymm19
# define YMM3 ymm20
# define YMM4 ymm21
# define YMM5 ymm22
# define YMM6 ymm23
# define YMM7 ymm24
# define YMM8 ymm25
# define VEC_SIZE 32
# define PAGE_SIZE 4096
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
.section .text.evex,"ax",@progbits
ENTRY (STRCHR)
/* Broadcast CHAR to YMM0. */
VPBROADCAST %esi, %YMM0
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
vpxorq %XMMZERO, %XMMZERO, %XMMZERO
/* Check if we cross page boundary with one vector load.
Otherwise it is safe to use an unaligned load. */
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. Search for both CHAR and the
null bytes. */
VMOVU (%rdi), %YMM1
/* Leaves only CHARS matching esi as 0. */
vpxorq %YMM1, %YMM0, %YMM2
VPMINU %YMM2, %YMM1, %YMM2
/* Each bit in K0 represents a CHAR or a null byte in YMM1. */
VPCMP $0, %YMMZERO, %YMM2, %k0
kmovd %k0, %eax
testl %eax, %eax
jz L(aligned_more)
tzcntl %eax, %eax
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (%rax), %CHAR_REG
jne L(zero)
# endif
ret
/* .p2align 5 helps keep performance more consistent if ENTRY()
alignment % 32 was either 16 or 0. As well this makes the
alignment % 32 of the loop_4x_vec fixed which makes tuning it
easier. */
.p2align 5
L(first_vec_x3):
tzcntl %eax, %eax
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax
ret
# ifndef USE_AS_STRCHRNUL
L(zero):
xorl %eax, %eax
ret
# endif
.p2align 4
L(first_vec_x4):
# ifndef USE_AS_STRCHRNUL
/* Check to see if first match was CHAR (k0) or null (k1). */
kmovd %k0, %eax
tzcntl %eax, %eax
kmovd %k1, %ecx
/* bzhil will not be 0 if first match was null. */
bzhil %eax, %ecx, %ecx
jne L(zero)
# else
/* Combine CHAR and null matches. */
kord %k0, %k1, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(first_vec_x1):
tzcntl %eax, %eax
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(first_vec_x2):
# ifndef USE_AS_STRCHRNUL
/* Check to see if first match was CHAR (k0) or null (k1). */
kmovd %k0, %eax
tzcntl %eax, %eax
kmovd %k1, %ecx
/* bzhil will not be 0 if first match was null. */
bzhil %eax, %ecx, %ecx
jne L(zero)
# else
/* Combine CHAR and null matches. */
kord %k0, %k1, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(aligned_more):
/* Align data to VEC_SIZE. */
andq $-VEC_SIZE, %rdi
L(cross_page_continue):
/* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time since
data is only aligned to VEC_SIZE. Use two alternating methods
for checking VEC to balance latency and port contention. */
/* This method has higher latency but has better port
distribution. */
VMOVA (VEC_SIZE)(%rdi), %YMM1
/* Leaves only CHARS matching esi as 0. */
vpxorq %YMM1, %YMM0, %YMM2
VPMINU %YMM2, %YMM1, %YMM2
/* Each bit in K0 represents a CHAR or a null byte in YMM1. */
VPCMP $0, %YMMZERO, %YMM2, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x1)
/* This method has higher latency but has better port
distribution. */
VMOVA (VEC_SIZE * 2)(%rdi), %YMM1
/* Each bit in K0 represents a CHAR in YMM1. */
VPCMP $0, %YMM1, %YMM0, %k0
/* Each bit in K1 represents a CHAR in YMM1. */
VPCMP $0, %YMM1, %YMMZERO, %k1
kortestd %k0, %k1
jnz L(first_vec_x2)
VMOVA (VEC_SIZE * 3)(%rdi), %YMM1
/* Leaves only CHARS matching esi as 0. */
vpxorq %YMM1, %YMM0, %YMM2
VPMINU %YMM2, %YMM1, %YMM2
/* Each bit in K0 represents a CHAR or a null byte in YMM1. */
VPCMP $0, %YMMZERO, %YMM2, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x3)
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
/* Each bit in K0 represents a CHAR in YMM1. */
VPCMP $0, %YMM1, %YMM0, %k0
/* Each bit in K1 represents a CHAR in YMM1. */
VPCMP $0, %YMM1, %YMMZERO, %k1
kortestd %k0, %k1
jnz L(first_vec_x4)
/* Align data to VEC_SIZE * 4 for the loop. */
addq $VEC_SIZE, %rdi
andq $-(VEC_SIZE * 4), %rdi
.p2align 4
L(loop_4x_vec):
/* Check 4x VEC at a time. No penalty to imm32 offset with evex
encoding. */
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
VMOVA (VEC_SIZE * 5)(%rdi), %YMM2
VMOVA (VEC_SIZE * 6)(%rdi), %YMM3
VMOVA (VEC_SIZE * 7)(%rdi), %YMM4
/* For YMM1 and YMM3 use xor to set the CHARs matching esi to
zero. */
vpxorq %YMM1, %YMM0, %YMM5
/* For YMM2 and YMM4 cmp not equals to CHAR and store result in
k register. Its possible to save either 1 or 2 instructions
using cmp no equals method for either YMM1 or YMM1 and YMM3
respectively but bottleneck on p5 makes it not worth it. */
VPCMP $4, %YMM0, %YMM2, %k2
vpxorq %YMM3, %YMM0, %YMM7
VPCMP $4, %YMM0, %YMM4, %k4
/* Use min to select all zeros from either xor or end of string).
*/
VPMINU %YMM1, %YMM5, %YMM1
VPMINU %YMM3, %YMM7, %YMM3
/* Use min + zeromask to select for zeros. Since k2 and k4 will
have 0 as positions that matched with CHAR which will set
zero in the corresponding destination bytes in YMM2 / YMM4.
*/
VPMINU %YMM1, %YMM2, %YMM2{%k2}{z}
VPMINU %YMM3, %YMM4, %YMM4
VPMINU %YMM2, %YMM4, %YMM4{%k4}{z}
VPCMP $0, %YMMZERO, %YMM4, %k1
kmovd %k1, %ecx
subq $-(VEC_SIZE * 4), %rdi
testl %ecx, %ecx
jz L(loop_4x_vec)
VPCMP $0, %YMMZERO, %YMM1, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(last_vec_x1)
VPCMP $0, %YMMZERO, %YMM2, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(last_vec_x2)
VPCMP $0, %YMMZERO, %YMM3, %k0
kmovd %k0, %eax
/* Combine YMM3 matches (eax) with YMM4 matches (ecx). */
# ifdef USE_AS_WCSCHR
sall $8, %ecx
orl %ecx, %eax
tzcntl %eax, %eax
# else
salq $32, %rcx
orq %rcx, %rax
tzcntq %rax, %rax
# endif
# ifndef USE_AS_STRCHRNUL
/* Check if match was CHAR or null. */
cmp (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end):
xorl %eax, %eax
ret
# endif
.p2align 4
L(last_vec_x1):
tzcntl %eax, %eax
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(last_vec_x2):
tzcntl %eax, %eax
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %rax
ret
/* Cold case for crossing page with first load. */
.p2align 4
L(cross_page_boundary):
movq %rdi, %rdx
/* Align rdi. */
andq $-VEC_SIZE, %rdi
VMOVA (%rdi), %YMM1
/* Leaves only CHARS matching esi as 0. */
vpxorq %YMM1, %YMM0, %YMM2
VPMINU %YMM2, %YMM1, %YMM2
/* Each bit in K0 represents a CHAR or a null byte in YMM1. */
VPCMP $0, %YMMZERO, %YMM2, %k0
kmovd %k0, %eax
/* Remove the leading bits. */
# ifdef USE_AS_WCSCHR
movl %edx, %SHIFT_REG
/* NB: Divide shift count by 4 since each bit in K1 represent 4
bytes. */
sarl $2, %SHIFT_REG
andl $(CHAR_PER_VEC - 1), %SHIFT_REG
# endif
sarxl %SHIFT_REG, %eax, %eax
/* If eax is zero continue. */
testl %eax, %eax
jz L(cross_page_continue)
tzcntl %eax, %eax
# ifndef USE_AS_STRCHRNUL
/* Check to see if match was CHAR or null. */
cmp (%rdx, %rax, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of
bytes. */
leaq (%rdx, %rax, CHAR_SIZE), %rax
# else
addq %rdx, %rax
# endif
ret
END (STRCHR)
# endif