mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-11 11:50:06 +00:00
c643db8792
j1 and jn can underflow for small arguments, but fail to set errno when underflowing to 0. This patch fixes them to set errno in that case. Tested for x86_64, x86, mips64 and powerpc. [BZ #18611] * sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and avoid excess range and precision on underflow. * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on underflow. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise. * math/auto-libm-test-in: Do not allow missing errno setting for tests of j1 and jn. * math/auto-libm-test-out: Regenerated.
967 lines
32 KiB
C
967 lines
32 KiB
C
/* j1l.c
|
|
*
|
|
* Bessel function of order one
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, j1l();
|
|
*
|
|
* y = j1l( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns Bessel function of first kind, order one of the argument.
|
|
*
|
|
* The domain is divided into two major intervals [0, 2] and
|
|
* (2, infinity). In the first interval the rational approximation is
|
|
* J1(x) = .5x + x x^2 R(x^2)
|
|
*
|
|
* The second interval is further partitioned into eight equal segments
|
|
* of 1/x.
|
|
* J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
|
|
* X = x - 3 pi / 4,
|
|
*
|
|
* and the auxiliary functions are given by
|
|
*
|
|
* J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
|
|
* P1(x) = 1 + 1/x^2 R(1/x^2)
|
|
*
|
|
* Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
|
|
* Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Absolute error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 100000 2.8e-34 2.7e-35
|
|
*
|
|
*
|
|
*/
|
|
|
|
/* y1l.c
|
|
*
|
|
* Bessel function of the second kind, order one
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, y1l();
|
|
*
|
|
* y = y1l( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns Bessel function of the second kind, of order
|
|
* one, of the argument.
|
|
*
|
|
* The domain is divided into two major intervals [0, 2] and
|
|
* (2, infinity). In the first interval the rational approximation is
|
|
* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
|
|
* In the second interval the approximation is the same as for J1(x), and
|
|
* Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
|
|
* X = x - 3 pi / 4.
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Absolute error, when y0(x) < 1; else relative error:
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 100000 2.7e-34 2.9e-35
|
|
*
|
|
*/
|
|
|
|
/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
/* 1 / sqrt(pi) */
|
|
static const long double ONEOSQPI = 5.6418958354775628694807945156077258584405E-1L;
|
|
/* 2 / pi */
|
|
static const long double TWOOPI = 6.3661977236758134307553505349005744813784E-1L;
|
|
static const long double zero = 0.0L;
|
|
|
|
/* J1(x) = .5x + x x^2 R(x^2)
|
|
Peak relative error 1.9e-35
|
|
0 <= x <= 2 */
|
|
#define NJ0_2N 6
|
|
static const long double J0_2N[NJ0_2N + 1] = {
|
|
-5.943799577386942855938508697619735179660E16L,
|
|
1.812087021305009192259946997014044074711E15L,
|
|
-2.761698314264509665075127515729146460895E13L,
|
|
2.091089497823600978949389109350658815972E11L,
|
|
-8.546413231387036372945453565654130054307E8L,
|
|
1.797229225249742247475464052741320612261E6L,
|
|
-1.559552840946694171346552770008812083969E3L
|
|
};
|
|
#define NJ0_2D 6
|
|
static const long double J0_2D[NJ0_2D + 1] = {
|
|
9.510079323819108569501613916191477479397E17L,
|
|
1.063193817503280529676423936545854693915E16L,
|
|
5.934143516050192600795972192791775226920E13L,
|
|
2.168000911950620999091479265214368352883E11L,
|
|
5.673775894803172808323058205986256928794E8L,
|
|
1.080329960080981204840966206372671147224E6L,
|
|
1.411951256636576283942477881535283304912E3L,
|
|
/* 1.000000000000000000000000000000000000000E0L */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0 <= 1/x <= .0625
|
|
Peak relative error 3.6e-36 */
|
|
#define NP16_IN 9
|
|
static const long double P16_IN[NP16_IN + 1] = {
|
|
5.143674369359646114999545149085139822905E-16L,
|
|
4.836645664124562546056389268546233577376E-13L,
|
|
1.730945562285804805325011561498453013673E-10L,
|
|
3.047976856147077889834905908605310585810E-8L,
|
|
2.855227609107969710407464739188141162386E-6L,
|
|
1.439362407936705484122143713643023998457E-4L,
|
|
3.774489768532936551500999699815873422073E-3L,
|
|
4.723962172984642566142399678920790598426E-2L,
|
|
2.359289678988743939925017240478818248735E-1L,
|
|
3.032580002220628812728954785118117124520E-1L,
|
|
};
|
|
#define NP16_ID 9
|
|
static const long double P16_ID[NP16_ID + 1] = {
|
|
4.389268795186898018132945193912677177553E-15L,
|
|
4.132671824807454334388868363256830961655E-12L,
|
|
1.482133328179508835835963635130894413136E-9L,
|
|
2.618941412861122118906353737117067376236E-7L,
|
|
2.467854246740858470815714426201888034270E-5L,
|
|
1.257192927368839847825938545925340230490E-3L,
|
|
3.362739031941574274949719324644120720341E-2L,
|
|
4.384458231338934105875343439265370178858E-1L,
|
|
2.412830809841095249170909628197264854651E0L,
|
|
4.176078204111348059102962617368214856874E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0.0625 <= 1/x <= 0.125
|
|
Peak relative error 1.9e-36 */
|
|
#define NP8_16N 11
|
|
static const long double P8_16N[NP8_16N + 1] = {
|
|
2.984612480763362345647303274082071598135E-16L,
|
|
1.923651877544126103941232173085475682334E-13L,
|
|
4.881258879388869396043760693256024307743E-11L,
|
|
6.368866572475045408480898921866869811889E-9L,
|
|
4.684818344104910450523906967821090796737E-7L,
|
|
2.005177298271593587095982211091300382796E-5L,
|
|
4.979808067163957634120681477207147536182E-4L,
|
|
6.946005761642579085284689047091173581127E-3L,
|
|
5.074601112955765012750207555985299026204E-2L,
|
|
1.698599455896180893191766195194231825379E-1L,
|
|
1.957536905259237627737222775573623779638E-1L,
|
|
2.991314703282528370270179989044994319374E-2L,
|
|
};
|
|
#define NP8_16D 10
|
|
static const long double P8_16D[NP8_16D + 1] = {
|
|
2.546869316918069202079580939942463010937E-15L,
|
|
1.644650111942455804019788382157745229955E-12L,
|
|
4.185430770291694079925607420808011147173E-10L,
|
|
5.485331966975218025368698195861074143153E-8L,
|
|
4.062884421686912042335466327098932678905E-6L,
|
|
1.758139661060905948870523641319556816772E-4L,
|
|
4.445143889306356207566032244985607493096E-3L,
|
|
6.391901016293512632765621532571159071158E-2L,
|
|
4.933040207519900471177016015718145795434E-1L,
|
|
1.839144086168947712971630337250761842976E0L,
|
|
2.715120873995490920415616716916149586579E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0.125 <= 1/x <= 0.1875
|
|
Peak relative error 1.3e-36 */
|
|
#define NP5_8N 10
|
|
static const long double P5_8N[NP5_8N + 1] = {
|
|
2.837678373978003452653763806968237227234E-12L,
|
|
9.726641165590364928442128579282742354806E-10L,
|
|
1.284408003604131382028112171490633956539E-7L,
|
|
8.524624695868291291250573339272194285008E-6L,
|
|
3.111516908953172249853673787748841282846E-4L,
|
|
6.423175156126364104172801983096596409176E-3L,
|
|
7.430220589989104581004416356260692450652E-2L,
|
|
4.608315409833682489016656279567605536619E-1L,
|
|
1.396870223510964882676225042258855977512E0L,
|
|
1.718500293904122365894630460672081526236E0L,
|
|
5.465927698800862172307352821870223855365E-1L
|
|
};
|
|
#define NP5_8D 10
|
|
static const long double P5_8D[NP5_8D + 1] = {
|
|
2.421485545794616609951168511612060482715E-11L,
|
|
8.329862750896452929030058039752327232310E-9L,
|
|
1.106137992233383429630592081375289010720E-6L,
|
|
7.405786153760681090127497796448503306939E-5L,
|
|
2.740364785433195322492093333127633465227E-3L,
|
|
5.781246470403095224872243564165254652198E-2L,
|
|
6.927711353039742469918754111511109983546E-1L,
|
|
4.558679283460430281188304515922826156690E0L,
|
|
1.534468499844879487013168065728837900009E1L,
|
|
2.313927430889218597919624843161569422745E1L,
|
|
1.194506341319498844336768473218382828637E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.4e-36
|
|
0.1875 <= 1/x <= 0.25 */
|
|
#define NP4_5N 10
|
|
static const long double P4_5N[NP4_5N + 1] = {
|
|
1.846029078268368685834261260420933914621E-10L,
|
|
3.916295939611376119377869680335444207768E-8L,
|
|
3.122158792018920627984597530935323997312E-6L,
|
|
1.218073444893078303994045653603392272450E-4L,
|
|
2.536420827983485448140477159977981844883E-3L,
|
|
2.883011322006690823959367922241169171315E-2L,
|
|
1.755255190734902907438042414495469810830E-1L,
|
|
5.379317079922628599870898285488723736599E-1L,
|
|
7.284904050194300773890303361501726561938E-1L,
|
|
3.270110346613085348094396323925000362813E-1L,
|
|
1.804473805689725610052078464951722064757E-2L,
|
|
};
|
|
#define NP4_5D 9
|
|
static const long double P4_5D[NP4_5D + 1] = {
|
|
1.575278146806816970152174364308980863569E-9L,
|
|
3.361289173657099516191331123405675054321E-7L,
|
|
2.704692281550877810424745289838790693708E-5L,
|
|
1.070854930483999749316546199273521063543E-3L,
|
|
2.282373093495295842598097265627962125411E-2L,
|
|
2.692025460665354148328762368240343249830E-1L,
|
|
1.739892942593664447220951225734811133759E0L,
|
|
5.890727576752230385342377570386657229324E0L,
|
|
9.517442287057841500750256954117735128153E0L,
|
|
6.100616353935338240775363403030137736013E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 3.0e-36
|
|
0.25 <= 1/x <= 0.3125 */
|
|
#define NP3r2_4N 9
|
|
static const long double P3r2_4N[NP3r2_4N + 1] = {
|
|
8.240803130988044478595580300846665863782E-8L,
|
|
1.179418958381961224222969866406483744580E-5L,
|
|
6.179787320956386624336959112503824397755E-4L,
|
|
1.540270833608687596420595830747166658383E-2L,
|
|
1.983904219491512618376375619598837355076E-1L,
|
|
1.341465722692038870390470651608301155565E0L,
|
|
4.617865326696612898792238245990854646057E0L,
|
|
7.435574801812346424460233180412308000587E0L,
|
|
4.671327027414635292514599201278557680420E0L,
|
|
7.299530852495776936690976966995187714739E-1L,
|
|
};
|
|
#define NP3r2_4D 9
|
|
static const long double P3r2_4D[NP3r2_4D + 1] = {
|
|
7.032152009675729604487575753279187576521E-7L,
|
|
1.015090352324577615777511269928856742848E-4L,
|
|
5.394262184808448484302067955186308730620E-3L,
|
|
1.375291438480256110455809354836988584325E-1L,
|
|
1.836247144461106304788160919310404376670E0L,
|
|
1.314378564254376655001094503090935880349E1L,
|
|
4.957184590465712006934452500894672343488E1L,
|
|
9.287394244300647738855415178790263465398E1L,
|
|
7.652563275535900609085229286020552768399E1L,
|
|
2.147042473003074533150718117770093209096E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.0e-35
|
|
0.3125 <= 1/x <= 0.375 */
|
|
#define NP2r7_3r2N 9
|
|
static const long double P2r7_3r2N[NP2r7_3r2N + 1] = {
|
|
4.599033469240421554219816935160627085991E-7L,
|
|
4.665724440345003914596647144630893997284E-5L,
|
|
1.684348845667764271596142716944374892756E-3L,
|
|
2.802446446884455707845985913454440176223E-2L,
|
|
2.321937586453963310008279956042545173930E-1L,
|
|
9.640277413988055668692438709376437553804E-1L,
|
|
1.911021064710270904508663334033003246028E0L,
|
|
1.600811610164341450262992138893970224971E0L,
|
|
4.266299218652587901171386591543457861138E-1L,
|
|
1.316470424456061252962568223251247207325E-2L,
|
|
};
|
|
#define NP2r7_3r2D 8
|
|
static const long double P2r7_3r2D[NP2r7_3r2D + 1] = {
|
|
3.924508608545520758883457108453520099610E-6L,
|
|
4.029707889408829273226495756222078039823E-4L,
|
|
1.484629715787703260797886463307469600219E-2L,
|
|
2.553136379967180865331706538897231588685E-1L,
|
|
2.229457223891676394409880026887106228740E0L,
|
|
1.005708903856384091956550845198392117318E1L,
|
|
2.277082659664386953166629360352385889558E1L,
|
|
2.384726835193630788249826630376533988245E1L,
|
|
9.700989749041320895890113781610939632410E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.7e-36
|
|
0.3125 <= 1/x <= 0.4375 */
|
|
#define NP2r3_2r7N 9
|
|
static const long double P2r3_2r7N[NP2r3_2r7N + 1] = {
|
|
3.916766777108274628543759603786857387402E-6L,
|
|
3.212176636756546217390661984304645137013E-4L,
|
|
9.255768488524816445220126081207248947118E-3L,
|
|
1.214853146369078277453080641911700735354E-1L,
|
|
7.855163309847214136198449861311404633665E-1L,
|
|
2.520058073282978403655488662066019816540E0L,
|
|
3.825136484837545257209234285382183711466E0L,
|
|
2.432569427554248006229715163865569506873E0L,
|
|
4.877934835018231178495030117729800489743E-1L,
|
|
1.109902737860249670981355149101343427885E-2L,
|
|
};
|
|
#define NP2r3_2r7D 8
|
|
static const long double P2r3_2r7D[NP2r3_2r7D + 1] = {
|
|
3.342307880794065640312646341190547184461E-5L,
|
|
2.782182891138893201544978009012096558265E-3L,
|
|
8.221304931614200702142049236141249929207E-2L,
|
|
1.123728246291165812392918571987858010949E0L,
|
|
7.740482453652715577233858317133423434590E0L,
|
|
2.737624677567945952953322566311201919139E1L,
|
|
4.837181477096062403118304137851260715475E1L,
|
|
3.941098643468580791437772701093795299274E1L,
|
|
1.245821247166544627558323920382547533630E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.7e-35
|
|
0.4375 <= 1/x <= 0.5 */
|
|
#define NP2_2r3N 8
|
|
static const long double P2_2r3N[NP2_2r3N + 1] = {
|
|
3.397930802851248553545191160608731940751E-4L,
|
|
2.104020902735482418784312825637833698217E-2L,
|
|
4.442291771608095963935342749477836181939E-1L,
|
|
4.131797328716583282869183304291833754967E0L,
|
|
1.819920169779026500146134832455189917589E1L,
|
|
3.781779616522937565300309684282401791291E1L,
|
|
3.459605449728864218972931220783543410347E1L,
|
|
1.173594248397603882049066603238568316561E1L,
|
|
9.455702270242780642835086549285560316461E-1L,
|
|
};
|
|
#define NP2_2r3D 8
|
|
static const long double P2_2r3D[NP2_2r3D + 1] = {
|
|
2.899568897241432883079888249845707400614E-3L,
|
|
1.831107138190848460767699919531132426356E-1L,
|
|
3.999350044057883839080258832758908825165E0L,
|
|
3.929041535867957938340569419874195303712E1L,
|
|
1.884245613422523323068802689915538908291E2L,
|
|
4.461469948819229734353852978424629815929E2L,
|
|
5.004998753999796821224085972610636347903E2L,
|
|
2.386342520092608513170837883757163414100E2L,
|
|
3.791322528149347975999851588922424189957E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 8.0e-36
|
|
0 <= 1/x <= .0625 */
|
|
#define NQ16_IN 10
|
|
static const long double Q16_IN[NQ16_IN + 1] = {
|
|
-3.917420835712508001321875734030357393421E-18L,
|
|
-4.440311387483014485304387406538069930457E-15L,
|
|
-1.951635424076926487780929645954007139616E-12L,
|
|
-4.318256438421012555040546775651612810513E-10L,
|
|
-5.231244131926180765270446557146989238020E-8L,
|
|
-3.540072702902043752460711989234732357653E-6L,
|
|
-1.311017536555269966928228052917534882984E-4L,
|
|
-2.495184669674631806622008769674827575088E-3L,
|
|
-2.141868222987209028118086708697998506716E-2L,
|
|
-6.184031415202148901863605871197272650090E-2L,
|
|
-1.922298704033332356899546792898156493887E-2L,
|
|
};
|
|
#define NQ16_ID 9
|
|
static const long double Q16_ID[NQ16_ID + 1] = {
|
|
3.820418034066293517479619763498400162314E-17L,
|
|
4.340702810799239909648911373329149354911E-14L,
|
|
1.914985356383416140706179933075303538524E-11L,
|
|
4.262333682610888819476498617261895474330E-9L,
|
|
5.213481314722233980346462747902942182792E-7L,
|
|
3.585741697694069399299005316809954590558E-5L,
|
|
1.366513429642842006385029778105539457546E-3L,
|
|
2.745282599850704662726337474371355160594E-2L,
|
|
2.637644521611867647651200098449903330074E-1L,
|
|
1.006953426110765984590782655598680488746E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.9e-36
|
|
0.0625 <= 1/x <= 0.125 */
|
|
#define NQ8_16N 11
|
|
static const long double Q8_16N[NQ8_16N + 1] = {
|
|
-2.028630366670228670781362543615221542291E-17L,
|
|
-1.519634620380959966438130374006858864624E-14L,
|
|
-4.540596528116104986388796594639405114524E-12L,
|
|
-7.085151756671466559280490913558388648274E-10L,
|
|
-6.351062671323970823761883833531546885452E-8L,
|
|
-3.390817171111032905297982523519503522491E-6L,
|
|
-1.082340897018886970282138836861233213972E-4L,
|
|
-2.020120801187226444822977006648252379508E-3L,
|
|
-2.093169910981725694937457070649605557555E-2L,
|
|
-1.092176538874275712359269481414448063393E-1L,
|
|
-2.374790947854765809203590474789108718733E-1L,
|
|
-1.365364204556573800719985118029601401323E-1L,
|
|
};
|
|
#define NQ8_16D 11
|
|
static const long double Q8_16D[NQ8_16D + 1] = {
|
|
1.978397614733632533581207058069628242280E-16L,
|
|
1.487361156806202736877009608336766720560E-13L,
|
|
4.468041406888412086042576067133365913456E-11L,
|
|
7.027822074821007443672290507210594648877E-9L,
|
|
6.375740580686101224127290062867976007374E-7L,
|
|
3.466887658320002225888644977076410421940E-5L,
|
|
1.138625640905289601186353909213719596986E-3L,
|
|
2.224470799470414663443449818235008486439E-2L,
|
|
2.487052928527244907490589787691478482358E-1L,
|
|
1.483927406564349124649083853892380899217E0L,
|
|
4.182773513276056975777258788903489507705E0L,
|
|
4.419665392573449746043880892524360870944E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.5e-35
|
|
0.125 <= 1/x <= 0.1875 */
|
|
#define NQ5_8N 10
|
|
static const long double Q5_8N[NQ5_8N + 1] = {
|
|
-3.656082407740970534915918390488336879763E-13L,
|
|
-1.344660308497244804752334556734121771023E-10L,
|
|
-1.909765035234071738548629788698150760791E-8L,
|
|
-1.366668038160120210269389551283666716453E-6L,
|
|
-5.392327355984269366895210704976314135683E-5L,
|
|
-1.206268245713024564674432357634540343884E-3L,
|
|
-1.515456784370354374066417703736088291287E-2L,
|
|
-1.022454301137286306933217746545237098518E-1L,
|
|
-3.373438906472495080504907858424251082240E-1L,
|
|
-4.510782522110845697262323973549178453405E-1L,
|
|
-1.549000892545288676809660828213589804884E-1L,
|
|
};
|
|
#define NQ5_8D 10
|
|
static const long double Q5_8D[NQ5_8D + 1] = {
|
|
3.565550843359501079050699598913828460036E-12L,
|
|
1.321016015556560621591847454285330528045E-9L,
|
|
1.897542728662346479999969679234270605975E-7L,
|
|
1.381720283068706710298734234287456219474E-5L,
|
|
5.599248147286524662305325795203422873725E-4L,
|
|
1.305442352653121436697064782499122164843E-2L,
|
|
1.750234079626943298160445750078631894985E-1L,
|
|
1.311420542073436520965439883806946678491E0L,
|
|
5.162757689856842406744504211089724926650E0L,
|
|
9.527760296384704425618556332087850581308E0L,
|
|
6.604648207463236667912921642545100248584E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.3e-35
|
|
0.1875 <= 1/x <= 0.25 */
|
|
#define NQ4_5N 10
|
|
static const long double Q4_5N[NQ4_5N + 1] = {
|
|
-4.079513568708891749424783046520200903755E-11L,
|
|
-9.326548104106791766891812583019664893311E-9L,
|
|
-8.016795121318423066292906123815687003356E-7L,
|
|
-3.372350544043594415609295225664186750995E-5L,
|
|
-7.566238665947967882207277686375417983917E-4L,
|
|
-9.248861580055565402130441618521591282617E-3L,
|
|
-6.033106131055851432267702948850231270338E-2L,
|
|
-1.966908754799996793730369265431584303447E-1L,
|
|
-2.791062741179964150755788226623462207560E-1L,
|
|
-1.255478605849190549914610121863534191666E-1L,
|
|
-4.320429862021265463213168186061696944062E-3L,
|
|
};
|
|
#define NQ4_5D 9
|
|
static const long double Q4_5D[NQ4_5D + 1] = {
|
|
3.978497042580921479003851216297330701056E-10L,
|
|
9.203304163828145809278568906420772246666E-8L,
|
|
8.059685467088175644915010485174545743798E-6L,
|
|
3.490187375993956409171098277561669167446E-4L,
|
|
8.189109654456872150100501732073810028829E-3L,
|
|
1.072572867311023640958725265762483033769E-1L,
|
|
7.790606862409960053675717185714576937994E-1L,
|
|
3.016049768232011196434185423512777656328E0L,
|
|
5.722963851442769787733717162314477949360E0L,
|
|
4.510527838428473279647251350931380867663E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 2.1e-35
|
|
0.25 <= 1/x <= 0.3125 */
|
|
#define NQ3r2_4N 9
|
|
static const long double Q3r2_4N[NQ3r2_4N + 1] = {
|
|
-1.087480809271383885936921889040388133627E-8L,
|
|
-1.690067828697463740906962973479310170932E-6L,
|
|
-9.608064416995105532790745641974762550982E-5L,
|
|
-2.594198839156517191858208513873961837410E-3L,
|
|
-3.610954144421543968160459863048062977822E-2L,
|
|
-2.629866798251843212210482269563961685666E-1L,
|
|
-9.709186825881775885917984975685752956660E-1L,
|
|
-1.667521829918185121727268867619982417317E0L,
|
|
-1.109255082925540057138766105229900943501E0L,
|
|
-1.812932453006641348145049323713469043328E-1L,
|
|
};
|
|
#define NQ3r2_4D 9
|
|
static const long double Q3r2_4D[NQ3r2_4D + 1] = {
|
|
1.060552717496912381388763753841473407026E-7L,
|
|
1.676928002024920520786883649102388708024E-5L,
|
|
9.803481712245420839301400601140812255737E-4L,
|
|
2.765559874262309494758505158089249012930E-2L,
|
|
4.117921827792571791298862613287549140706E-1L,
|
|
3.323769515244751267093378361930279161413E0L,
|
|
1.436602494405814164724810151689705353670E1L,
|
|
3.163087869617098638064881410646782408297E1L,
|
|
3.198181264977021649489103980298349589419E1L,
|
|
1.203649258862068431199471076202897823272E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.6e-36
|
|
0.3125 <= 1/x <= 0.375 */
|
|
#define NQ2r7_3r2N 9
|
|
static const long double Q2r7_3r2N[NQ2r7_3r2N + 1] = {
|
|
-1.723405393982209853244278760171643219530E-7L,
|
|
-2.090508758514655456365709712333460087442E-5L,
|
|
-9.140104013370974823232873472192719263019E-4L,
|
|
-1.871349499990714843332742160292474780128E-2L,
|
|
-1.948930738119938669637865956162512983416E-1L,
|
|
-1.048764684978978127908439526343174139788E0L,
|
|
-2.827714929925679500237476105843643064698E0L,
|
|
-3.508761569156476114276988181329773987314E0L,
|
|
-1.669332202790211090973255098624488308989E0L,
|
|
-1.930796319299022954013840684651016077770E-1L,
|
|
};
|
|
#define NQ2r7_3r2D 9
|
|
static const long double Q2r7_3r2D[NQ2r7_3r2D + 1] = {
|
|
1.680730662300831976234547482334347983474E-6L,
|
|
2.084241442440551016475972218719621841120E-4L,
|
|
9.445316642108367479043541702688736295579E-3L,
|
|
2.044637889456631896650179477133252184672E-1L,
|
|
2.316091982244297350829522534435350078205E0L,
|
|
1.412031891783015085196708811890448488865E1L,
|
|
4.583830154673223384837091077279595496149E1L,
|
|
7.549520609270909439885998474045974122261E1L,
|
|
5.697605832808113367197494052388203310638E1L,
|
|
1.601496240876192444526383314589371686234E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 9.5e-36
|
|
0.375 <= 1/x <= 0.4375 */
|
|
#define NQ2r3_2r7N 9
|
|
static const long double Q2r3_2r7N[NQ2r3_2r7N + 1] = {
|
|
-8.603042076329122085722385914954878953775E-7L,
|
|
-7.701746260451647874214968882605186675720E-5L,
|
|
-2.407932004380727587382493696877569654271E-3L,
|
|
-3.403434217607634279028110636919987224188E-2L,
|
|
-2.348707332185238159192422084985713102877E-1L,
|
|
-7.957498841538254916147095255700637463207E-1L,
|
|
-1.258469078442635106431098063707934348577E0L,
|
|
-8.162415474676345812459353639449971369890E-1L,
|
|
-1.581783890269379690141513949609572806898E-1L,
|
|
-1.890595651683552228232308756569450822905E-3L,
|
|
};
|
|
#define NQ2r3_2r7D 8
|
|
static const long double Q2r3_2r7D[NQ2r3_2r7D + 1] = {
|
|
8.390017524798316921170710533381568175665E-6L,
|
|
7.738148683730826286477254659973968763659E-4L,
|
|
2.541480810958665794368759558791634341779E-2L,
|
|
3.878879789711276799058486068562386244873E-1L,
|
|
3.003783779325811292142957336802456109333E0L,
|
|
1.206480374773322029883039064575464497400E1L,
|
|
2.458414064785315978408974662900438351782E1L,
|
|
2.367237826273668567199042088835448715228E1L,
|
|
9.231451197519171090875569102116321676763E0L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.4e-36
|
|
0.4375 <= 1/x <= 0.5 */
|
|
#define NQ2_2r3N 9
|
|
static const long double Q2_2r3N[NQ2_2r3N + 1] = {
|
|
-5.552507516089087822166822364590806076174E-6L,
|
|
-4.135067659799500521040944087433752970297E-4L,
|
|
-1.059928728869218962607068840646564457980E-2L,
|
|
-1.212070036005832342565792241385459023801E-1L,
|
|
-6.688350110633603958684302153362735625156E-1L,
|
|
-1.793587878197360221340277951304429821582E0L,
|
|
-2.225407682237197485644647380483725045326E0L,
|
|
-1.123402135458940189438898496348239744403E0L,
|
|
-1.679187241566347077204805190763597299805E-1L,
|
|
-1.458550613639093752909985189067233504148E-3L,
|
|
};
|
|
#define NQ2_2r3D 8
|
|
static const long double Q2_2r3D[NQ2_2r3D + 1] = {
|
|
5.415024336507980465169023996403597916115E-5L,
|
|
4.179246497380453022046357404266022870788E-3L,
|
|
1.136306384261959483095442402929502368598E-1L,
|
|
1.422640343719842213484515445393284072830E0L,
|
|
8.968786703393158374728850922289204805764E0L,
|
|
2.914542473339246127533384118781216495934E1L,
|
|
4.781605421020380669870197378210457054685E1L,
|
|
3.693865837171883152382820584714795072937E1L,
|
|
1.153220502744204904763115556224395893076E1L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static long double
|
|
neval (long double x, const long double *p, int n)
|
|
{
|
|
long double y;
|
|
|
|
p += n;
|
|
y = *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static long double
|
|
deval (long double x, const long double *p, int n)
|
|
{
|
|
long double y;
|
|
|
|
p += n;
|
|
y = x + *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Bessel function of the first kind, order one. */
|
|
|
|
long double
|
|
__ieee754_j1l (long double x)
|
|
{
|
|
long double xx, xinv, z, p, q, c, s, cc, ss;
|
|
|
|
if (! isfinite (x))
|
|
{
|
|
if (x != x)
|
|
return x;
|
|
else
|
|
return 0.0L;
|
|
}
|
|
if (x == 0.0L)
|
|
return x;
|
|
xx = fabsl (x);
|
|
if (xx <= 0x1p-58L)
|
|
{
|
|
long double ret = x * 0.5L;
|
|
math_check_force_underflow (ret);
|
|
if (ret == 0)
|
|
__set_errno (ERANGE);
|
|
return ret;
|
|
}
|
|
if (xx <= 2.0L)
|
|
{
|
|
/* 0 <= x <= 2 */
|
|
z = xx * xx;
|
|
p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
|
|
p += 0.5L * xx;
|
|
if (x < 0)
|
|
p = -p;
|
|
return p;
|
|
}
|
|
|
|
/* X = x - 3 pi/4
|
|
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
|
= 1/sqrt(2) * (-cos(x) + sin(x))
|
|
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
|
= -1/sqrt(2) * (sin(x) + cos(x))
|
|
cf. Fdlibm. */
|
|
__sincosl (xx, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (xx <= LDBL_MAX / 2.0L)
|
|
{
|
|
z = __cosl (xx + xx);
|
|
if ((s * c) > 0)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
|
|
if (xx > 0x1p256L)
|
|
{
|
|
z = ONEOSQPI * cc / __ieee754_sqrtl (xx);
|
|
if (x < 0)
|
|
z = -z;
|
|
return z;
|
|
}
|
|
|
|
xinv = 1.0L / xx;
|
|
z = xinv * xinv;
|
|
if (xinv <= 0.25)
|
|
{
|
|
if (xinv <= 0.125)
|
|
{
|
|
if (xinv <= 0.0625)
|
|
{
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.1875)
|
|
{
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
|
}
|
|
} /* .25 */
|
|
else /* if (xinv <= 0.5) */
|
|
{
|
|
if (xinv <= 0.375)
|
|
{
|
|
if (xinv <= 0.3125)
|
|
{
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.4375)
|
|
{
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
|
}
|
|
}
|
|
p = 1.0L + z * p;
|
|
q = z * q;
|
|
q = q * xinv + 0.375L * xinv;
|
|
z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx);
|
|
if (x < 0)
|
|
z = -z;
|
|
return z;
|
|
}
|
|
strong_alias (__ieee754_j1l, __j1l_finite)
|
|
|
|
|
|
/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
|
|
Peak relative error 6.2e-38
|
|
0 <= x <= 2 */
|
|
#define NY0_2N 7
|
|
static long double Y0_2N[NY0_2N + 1] = {
|
|
-6.804415404830253804408698161694720833249E19L,
|
|
1.805450517967019908027153056150465849237E19L,
|
|
-8.065747497063694098810419456383006737312E17L,
|
|
1.401336667383028259295830955439028236299E16L,
|
|
-1.171654432898137585000399489686629680230E14L,
|
|
5.061267920943853732895341125243428129150E11L,
|
|
-1.096677850566094204586208610960870217970E9L,
|
|
9.541172044989995856117187515882879304461E5L,
|
|
};
|
|
#define NY0_2D 7
|
|
static long double Y0_2D[NY0_2D + 1] = {
|
|
3.470629591820267059538637461549677594549E20L,
|
|
4.120796439009916326855848107545425217219E18L,
|
|
2.477653371652018249749350657387030814542E16L,
|
|
9.954678543353888958177169349272167762797E13L,
|
|
2.957927997613630118216218290262851197754E11L,
|
|
6.748421382188864486018861197614025972118E8L,
|
|
1.173453425218010888004562071020305709319E6L,
|
|
1.450335662961034949894009554536003377187E3L,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
|
|
/* Bessel function of the second kind, order one. */
|
|
|
|
long double
|
|
__ieee754_y1l (long double x)
|
|
{
|
|
long double xx, xinv, z, p, q, c, s, cc, ss;
|
|
|
|
if (! isfinite (x))
|
|
{
|
|
if (x != x)
|
|
return x;
|
|
else
|
|
return 0.0L;
|
|
}
|
|
if (x <= 0.0L)
|
|
{
|
|
if (x < 0.0L)
|
|
return (zero / (zero * x));
|
|
return -HUGE_VALL + x;
|
|
}
|
|
xx = fabsl (x);
|
|
if (xx <= 0x1p-114)
|
|
{
|
|
z = -TWOOPI / x;
|
|
if (isinf (z))
|
|
__set_errno (ERANGE);
|
|
return z;
|
|
}
|
|
if (xx <= 2.0L)
|
|
{
|
|
/* 0 <= x <= 2 */
|
|
SET_RESTORE_ROUNDL (FE_TONEAREST);
|
|
z = xx * xx;
|
|
p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
|
|
p = -TWOOPI / xx + p;
|
|
p = TWOOPI * __ieee754_logl (x) * __ieee754_j1l (x) + p;
|
|
return p;
|
|
}
|
|
|
|
/* X = x - 3 pi/4
|
|
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
|
= 1/sqrt(2) * (-cos(x) + sin(x))
|
|
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
|
= -1/sqrt(2) * (sin(x) + cos(x))
|
|
cf. Fdlibm. */
|
|
__sincosl (xx, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (xx <= LDBL_MAX / 2.0L)
|
|
{
|
|
z = __cosl (xx + xx);
|
|
if ((s * c) > 0)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
|
|
if (xx > 0x1p256L)
|
|
return ONEOSQPI * ss / __ieee754_sqrtl (xx);
|
|
|
|
xinv = 1.0L / xx;
|
|
z = xinv * xinv;
|
|
if (xinv <= 0.25)
|
|
{
|
|
if (xinv <= 0.125)
|
|
{
|
|
if (xinv <= 0.0625)
|
|
{
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.1875)
|
|
{
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
|
}
|
|
} /* .25 */
|
|
else /* if (xinv <= 0.5) */
|
|
{
|
|
if (xinv <= 0.375)
|
|
{
|
|
if (xinv <= 0.3125)
|
|
{
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.4375)
|
|
{
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
|
}
|
|
}
|
|
p = 1.0L + z * p;
|
|
q = z * q;
|
|
q = q * xinv + 0.375L * xinv;
|
|
z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (xx);
|
|
return z;
|
|
}
|
|
strong_alias (__ieee754_y1l, __y1l_finite)
|