mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-11 11:50:06 +00:00
6ace393821
Similar to various other bugs in this area, pow functions can fail to raise the underflow exception when the result is tiny and inexact but one or more low bits of the intermediate result that is scaled down (or, in the i386 case, converted from a wider evaluation format) are zero. This patch forces the exception in a similar way to previous fixes, thereby concluding the fixes for known bugs with missing underflow exceptions currently filed in Bugzilla. Tested for x86_64, x86, mips64 and powerpc. [BZ #18825] * sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN): New macro. (DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise. (LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise. * sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN. (__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of DBL_NARROW_EVAL, reloading the PIC register as needed. * sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN. (__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of FLT_NARROW_EVAL. Use separate return path for case when first argument is NaN. * sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use DEFINE_LDBL_MIN. (__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the PIC register. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force underflow for subnormal result. * sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use math_check_force_underflow_nonneg. * sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use math_check_force_underflow. * sysdeps/x86_64/fpu/x86_64-math-asm.h (LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro. * sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use DEFINE_LDBL_MIN. (__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN. * math/auto-libm-test-in: Add more tests of pow. * math/auto-libm-test-out: Regenerated.
451 lines
12 KiB
C
451 lines
12 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* Expansions and modifications for 128-bit long double are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __ieee754_powl(x,y) return x**y
|
|
*
|
|
* n
|
|
* Method: Let x = 2 * (1+f)
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
* log2(x) = w1 + w2,
|
|
* where w1 has 113-53 = 60 bit trailing zeros.
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
* arithmetic, where |y'|<=0.5.
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
*
|
|
* Special cases:
|
|
* 1. (anything) ** 0 is 1
|
|
* 2. (anything) ** 1 is itself
|
|
* 3. (anything) ** NAN is NAN
|
|
* 4. NAN ** (anything except 0) is NAN
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
|
* 9. +-1 ** +-INF is NAN
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const long double bp[] = {
|
|
1.0L,
|
|
1.5L,
|
|
};
|
|
|
|
/* log_2(1.5) */
|
|
static const long double dp_h[] = {
|
|
0.0,
|
|
5.8496250072115607565592654282227158546448E-1L
|
|
};
|
|
|
|
/* Low part of log_2(1.5) */
|
|
static const long double dp_l[] = {
|
|
0.0,
|
|
1.0579781240112554492329533686862998106046E-16L
|
|
};
|
|
|
|
static const long double zero = 0.0L,
|
|
one = 1.0L,
|
|
two = 2.0L,
|
|
two113 = 1.0384593717069655257060992658440192E34L,
|
|
huge = 1.0e3000L,
|
|
tiny = 1.0e-3000L;
|
|
|
|
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
|
|
z = (x-1)/(x+1)
|
|
1 <= x <= 1.25
|
|
Peak relative error 2.3e-37 */
|
|
static const long double LN[] =
|
|
{
|
|
-3.0779177200290054398792536829702930623200E1L,
|
|
6.5135778082209159921251824580292116201640E1L,
|
|
-4.6312921812152436921591152809994014413540E1L,
|
|
1.2510208195629420304615674658258363295208E1L,
|
|
-9.9266909031921425609179910128531667336670E-1L
|
|
};
|
|
static const long double LD[] =
|
|
{
|
|
-5.129862866715009066465422805058933131960E1L,
|
|
1.452015077564081884387441590064272782044E2L,
|
|
-1.524043275549860505277434040464085593165E2L,
|
|
7.236063513651544224319663428634139768808E1L,
|
|
-1.494198912340228235853027849917095580053E1L
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
|
|
0 <= x <= 0.5
|
|
Peak relative error 5.7e-38 */
|
|
static const long double PN[] =
|
|
{
|
|
5.081801691915377692446852383385968225675E8L,
|
|
9.360895299872484512023336636427675327355E6L,
|
|
4.213701282274196030811629773097579432957E4L,
|
|
5.201006511142748908655720086041570288182E1L,
|
|
9.088368420359444263703202925095675982530E-3L,
|
|
};
|
|
static const long double PD[] =
|
|
{
|
|
3.049081015149226615468111430031590411682E9L,
|
|
1.069833887183886839966085436512368982758E8L,
|
|
8.259257717868875207333991924545445705394E5L,
|
|
1.872583833284143212651746812884298360922E3L,
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
static const long double
|
|
/* ln 2 */
|
|
lg2 = 6.9314718055994530941723212145817656807550E-1L,
|
|
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
|
|
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
|
|
ovt = 8.0085662595372944372e-0017L,
|
|
/* 2/(3*log(2)) */
|
|
cp = 9.6179669392597560490661645400126142495110E-1L,
|
|
cp_h = 9.6179669392597555432899980587535537779331E-1L,
|
|
cp_l = 5.0577616648125906047157785230014751039424E-17L;
|
|
|
|
long double
|
|
__ieee754_powl (long double x, long double y)
|
|
{
|
|
long double z, ax, z_h, z_l, p_h, p_l;
|
|
long double y1, t1, t2, r, s, sgn, t, u, v, w;
|
|
long double s2, s_h, s_l, t_h, t_l, ay;
|
|
int32_t i, j, k, yisint, n;
|
|
u_int32_t ix, iy;
|
|
int32_t hx, hy;
|
|
ieee854_long_double_shape_type o, p, q;
|
|
|
|
p.value = x;
|
|
hx = p.parts32.w0;
|
|
ix = hx & 0x7fffffff;
|
|
|
|
q.value = y;
|
|
hy = q.parts32.w0;
|
|
iy = hy & 0x7fffffff;
|
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)
|
|
return one;
|
|
|
|
/* 1.0**y = 1; -1.0**+-Inf = 1 */
|
|
if (x == one)
|
|
return one;
|
|
if (x == -1.0L && iy == 0x7fff0000
|
|
&& (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)
|
|
return one;
|
|
|
|
/* +-NaN return x+y */
|
|
if ((ix > 0x7fff0000)
|
|
|| ((ix == 0x7fff0000)
|
|
&& ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0))
|
|
|| (iy > 0x7fff0000)
|
|
|| ((iy == 0x7fff0000)
|
|
&& ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0)))
|
|
return x + y;
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
* yisint = 0 ... y is not an integer
|
|
* yisint = 1 ... y is an odd int
|
|
* yisint = 2 ... y is an even int
|
|
*/
|
|
yisint = 0;
|
|
if (hx < 0)
|
|
{
|
|
if (iy >= 0x40700000) /* 2^113 */
|
|
yisint = 2; /* even integer y */
|
|
else if (iy >= 0x3fff0000) /* 1.0 */
|
|
{
|
|
if (__floorl (y) == y)
|
|
{
|
|
z = 0.5 * y;
|
|
if (__floorl (z) == z)
|
|
yisint = 2;
|
|
else
|
|
yisint = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* special value of y */
|
|
if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)
|
|
{
|
|
if (iy == 0x7fff0000) /* y is +-inf */
|
|
{
|
|
if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3)
|
|
== 0)
|
|
return y - y; /* +-1**inf is NaN */
|
|
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
|
|
return (hy >= 0) ? y : zero;
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
return (hy < 0) ? -y : zero;
|
|
}
|
|
if (iy == 0x3fff0000)
|
|
{ /* y is +-1 */
|
|
if (hy < 0)
|
|
return one / x;
|
|
else
|
|
return x;
|
|
}
|
|
if (hy == 0x40000000)
|
|
return x * x; /* y is 2 */
|
|
if (hy == 0x3ffe0000)
|
|
{ /* y is 0.5 */
|
|
if (hx >= 0) /* x >= +0 */
|
|
return __ieee754_sqrtl (x);
|
|
}
|
|
}
|
|
|
|
ax = fabsl (x);
|
|
/* special value of x */
|
|
if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0)
|
|
{
|
|
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
|
|
{
|
|
z = ax; /*x is +-0,+-inf,+-1 */
|
|
if (hy < 0)
|
|
z = one / z; /* z = (1/|x|) */
|
|
if (hx < 0)
|
|
{
|
|
if (((ix - 0x3fff0000) | yisint) == 0)
|
|
{
|
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
|
}
|
|
else if (yisint == 1)
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
}
|
|
return z;
|
|
}
|
|
}
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
|
|
return (x - x) / (x - x);
|
|
|
|
/* sgn (sign of result -ve**odd) = -1 else = 1 */
|
|
sgn = one;
|
|
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
|
sgn = -one; /* (-ve)**(odd int) */
|
|
|
|
/* |y| is huge.
|
|
2^-16495 = 1/2 of smallest representable value.
|
|
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
|
if (iy > 0x401d654b)
|
|
{
|
|
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
|
|
if (iy > 0x407d654b)
|
|
{
|
|
if (ix <= 0x3ffeffff)
|
|
return (hy < 0) ? huge * huge : tiny * tiny;
|
|
if (ix >= 0x3fff0000)
|
|
return (hy > 0) ? huge * huge : tiny * tiny;
|
|
}
|
|
/* over/underflow if x is not close to one */
|
|
if (ix < 0x3ffeffff)
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
if (ix > 0x3fff0000)
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
}
|
|
|
|
ay = y > 0 ? y : -y;
|
|
if (ay < 0x1p-128)
|
|
y = y < 0 ? -0x1p-128 : 0x1p-128;
|
|
|
|
n = 0;
|
|
/* take care subnormal number */
|
|
if (ix < 0x00010000)
|
|
{
|
|
ax *= two113;
|
|
n -= 113;
|
|
o.value = ax;
|
|
ix = o.parts32.w0;
|
|
}
|
|
n += ((ix) >> 16) - 0x3fff;
|
|
j = ix & 0x0000ffff;
|
|
/* determine interval */
|
|
ix = j | 0x3fff0000; /* normalize ix */
|
|
if (j <= 0x3988)
|
|
k = 0; /* |x|<sqrt(3/2) */
|
|
else if (j < 0xbb67)
|
|
k = 1; /* |x|<sqrt(3) */
|
|
else
|
|
{
|
|
k = 0;
|
|
n += 1;
|
|
ix -= 0x00010000;
|
|
}
|
|
|
|
o.value = ax;
|
|
o.parts32.w0 = ix;
|
|
ax = o.value;
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
v = one / (ax + bp[k]);
|
|
s = u * v;
|
|
s_h = s;
|
|
|
|
o.value = s_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
s_h = o.value;
|
|
/* t_h=ax+bp[k] High */
|
|
t_h = ax + bp[k];
|
|
o.value = t_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t_h = o.value;
|
|
t_l = ax - (t_h - bp[k]);
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
/* compute log(ax) */
|
|
s2 = s * s;
|
|
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
|
|
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
|
|
r = s2 * s2 * u / v;
|
|
r += s_l * (s_h + s);
|
|
s2 = s_h * s_h;
|
|
t_h = 3.0 + s2 + r;
|
|
o.value = t_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t_h = o.value;
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
/* u+v = s*(1+...) */
|
|
u = s_h * t_h;
|
|
v = s_l * t_h + t_l * s;
|
|
/* 2/(3log2)*(s+...) */
|
|
p_h = u + v;
|
|
o.value = p_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
p_h = o.value;
|
|
p_l = v - (p_h - u);
|
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
t = (long double) n;
|
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
|
o.value = t1;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t1 = o.value;
|
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
y1 = y;
|
|
o.value = y1;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
y1 = o.value;
|
|
p_l = (y - y1) * t1 + y * t2;
|
|
p_h = y1 * t1;
|
|
z = p_l + p_h;
|
|
o.value = z;
|
|
j = o.parts32.w0;
|
|
if (j >= 0x400d0000) /* z >= 16384 */
|
|
{
|
|
/* if z > 16384 */
|
|
if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0)
|
|
return sgn * huge * huge; /* overflow */
|
|
else
|
|
{
|
|
if (p_l + ovt > z - p_h)
|
|
return sgn * huge * huge; /* overflow */
|
|
}
|
|
}
|
|
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
|
|
{
|
|
/* z < -16495 */
|
|
if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3)
|
|
!= 0)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
else
|
|
{
|
|
if (p_l <= z - p_h)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
}
|
|
}
|
|
/* compute 2**(p_h+p_l) */
|
|
i = j & 0x7fffffff;
|
|
k = (i >> 16) - 0x3fff;
|
|
n = 0;
|
|
if (i > 0x3ffe0000)
|
|
{ /* if |z| > 0.5, set n = [z+0.5] */
|
|
n = __floorl (z + 0.5L);
|
|
t = n;
|
|
p_h -= t;
|
|
}
|
|
t = p_l + p_h;
|
|
o.value = t;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t = o.value;
|
|
u = t * lg2_h;
|
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
|
z = u + v;
|
|
w = v - (z - u);
|
|
/* exp(z) */
|
|
t = z * z;
|
|
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
|
|
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
|
|
t1 = z - t * u / v;
|
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
|
z = one - (r - z);
|
|
o.value = z;
|
|
j = o.parts32.w0;
|
|
j += (n << 16);
|
|
if ((j >> 16) <= 0)
|
|
{
|
|
z = __scalbnl (z, n); /* subnormal output */
|
|
long double force_underflow = z * z;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
else
|
|
{
|
|
o.parts32.w0 = j;
|
|
z = o.value;
|
|
}
|
|
return sgn * z;
|
|
}
|
|
strong_alias (__ieee754_powl, __powl_finite)
|