glibc/math/s_csinhf.c
Joseph Myers ac831b362a Fix csin, csinh overflow in directed rounding modes (bug 18593).
csin and csinh can produce bad results when overflowing in directed
rounding modes, because a multiplication that can overflow is followed
by a possible negation.  This patch fixes this by negating one of the
arguments of the multiplication before the multiplication instead of
negating the result.

The new tests for this issue are added to auto-libm-test-in, starting
use of that file for csin and csinh.  The issue was found in the
course of moving existing tests for csin and csinh (existing tests, by
being enabled in more cases than previously, showed the issue for
float and double but not for long double); that move will now be done
separately.

Tested for x86_64 and x86 and ulps updated accordingly.

	[BZ #18593]
	* math/s_csin.c (__csin): Negate before rather than after possibly
	overflowing multiplication.
	* math/s_csinf.c (__csinf): Likewise.
	* math/s_csinh.c (__csinh): Likewise.
	* math/s_csinhf.c (__csinhf): Likewise.
	* math/s_csinhl.c (__csinhl): Likewise.
	* math/s_csinl.c (__csinl): Likewise.
	* math/auto-libm-test-in: Add some tests of csin and csinh.
	* math/auto-libm-test-out: Regenerated.
	* math/libm-test.inc (csin_test_data): Use AUTO_TESTS_c_c.
	(csinh_test_data): Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Update.
2015-06-24 16:20:48 +00:00

178 lines
4.2 KiB
C

/* Complex sine hyperbole function for float.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csinhf (__complex__ float x)
{
__complex__ float retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsf (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__glibc_likely (icls != FP_SUBNORMAL))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (negate)
cosix = -cosix;
if (fabsf (__real__ x) > t)
{
float exp_t = __ieee754_expf (t);
float rx = fabsf (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0f;
cosix *= exp_t / 2.0f;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT_MAX * cosix;
__imag__ retval = FLT_MAX * sinix;
}
else
{
float exp_val = __ieee754_expf (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinhf (__real__ x) * cosix;
__imag__ retval = __ieee754_coshf (__real__ x) * sinix;
}
if (fabsf (__real__ retval) < FLT_MIN)
{
volatile float force_underflow
= __real__ retval * __real__ retval;
(void) force_underflow;
}
if (fabsf (__imag__ retval) < FLT_MIN)
{
volatile float force_underflow
= __imag__ retval * __imag__ retval;
(void) force_underflow;
}
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
float sinix, cosix;
if (__glibc_likely (icls != FP_SUBNORMAL))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (HUGE_VALF, cosix);
__imag__ retval = __copysignf (HUGE_VALF, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALF : HUGE_VALF;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALF;
__imag__ retval = __nanf ("") + __nanf ("");
#ifdef FE_INVALID
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf ("");
}
return retval;
}
#ifndef __csinhf
weak_alias (__csinhf, csinhf)
#endif