glibc/sysdeps/ieee754/dbl-64/e_atan2.c
Joseph Myers 8431838dde Fix dbl-64 atan2 in non-default rounding modes (bug 18210, bug 18211).
The dbl-64 implementation of atan2 does computations that expect to
run in round-to-nearest mode, and in other modes the errors can
accumulate to more than the maximum accepted 9ulp.  This patch makes
it use FE_TONEAREST internally, similar to other functions with such
issues.  Tests that previously produced large errors are added for
atan2 and the closely related carg, clog and clog10 functions.

Tested for x86_64 and x86 and ulps updated accordingly.

	[BZ #18210]
	[BZ #18211]
	* sysdeps/ieee754/dbl-64/e_atan2.c: Include <fenv.h>.
	(__ieee754_atan2): Set FE_TONEAREST mode for internal
	computations.
	* math/auto-libm-test-in: Add more tests of atan2, carg, clog and
	clog10.
	* math/auto-libm-test-out: Regenerated.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-04-08 17:32:17 +00:00

621 lines
18 KiB
C

/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* MODULE_NAME: atnat2.c */
/* */
/* FUNCTIONS: uatan2 */
/* atan2Mp */
/* signArctan2 */
/* normalized */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */
/* mpatan.c mpatan2.c mpsqrt.c */
/* uatan.tbl */
/* */
/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/
/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
/* */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/************************************************************************/
#include <dla.h>
#include "mpa.h"
#include "MathLib.h"
#include "uatan.tbl"
#include "atnat2.h"
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <math_private.h>
#include <stap-probe.h>
#ifndef SECTION
# define SECTION
#endif
/************************************************************************/
/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */
/* it computes the correctly rounded (to nearest) value of atan2(y,x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/************************************************************************/
static double atan2Mp (double, double, const int[]);
/* Fix the sign and return after stage 1 or stage 2 */
static double
signArctan2 (double y, double z)
{
return __copysign (z, y);
}
static double normalized (double, double, double, double);
void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
double
SECTION
__ieee754_atan2 (double y, double x)
{
int i, de, ux, dx, uy, dy;
static const int pr[MM] = { 6, 8, 10, 20, 32 };
double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, t7, t8,
z, zz, cor, s1, ss1, s2, ss2;
#ifndef DLA_FMS
double t4, t5, t6;
#endif
number num;
static const int ep = 59768832, /* 57*16**5 */
em = -59768832; /* -57*16**5 */
/* x=NaN or y=NaN */
num.d = x;
ux = num.i[HIGH_HALF];
dx = num.i[LOW_HALF];
if ((ux & 0x7ff00000) == 0x7ff00000)
{
if (((ux & 0x000fffff) | dx) != 0x00000000)
return x + x;
}
num.d = y;
uy = num.i[HIGH_HALF];
dy = num.i[LOW_HALF];
if ((uy & 0x7ff00000) == 0x7ff00000)
{
if (((uy & 0x000fffff) | dy) != 0x00000000)
return y + y;
}
/* y=+-0 */
if (uy == 0x00000000)
{
if (dy == 0x00000000)
{
if ((ux & 0x80000000) == 0x00000000)
return 0;
else
return opi.d;
}
}
else if (uy == 0x80000000)
{
if (dy == 0x00000000)
{
if ((ux & 0x80000000) == 0x00000000)
return -0.0;
else
return mopi.d;
}
}
/* x=+-0 */
if (x == 0)
{
if ((uy & 0x80000000) == 0x00000000)
return hpi.d;
else
return mhpi.d;
}
/* x=+-INF */
if (ux == 0x7ff00000)
{
if (dx == 0x00000000)
{
if (uy == 0x7ff00000)
{
if (dy == 0x00000000)
return qpi.d;
}
else if (uy == 0xfff00000)
{
if (dy == 0x00000000)
return mqpi.d;
}
else
{
if ((uy & 0x80000000) == 0x00000000)
return 0;
else
return -0.0;
}
}
}
else if (ux == 0xfff00000)
{
if (dx == 0x00000000)
{
if (uy == 0x7ff00000)
{
if (dy == 0x00000000)
return tqpi.d;
}
else if (uy == 0xfff00000)
{
if (dy == 0x00000000)
return mtqpi.d;
}
else
{
if ((uy & 0x80000000) == 0x00000000)
return opi.d;
else
return mopi.d;
}
}
}
/* y=+-INF */
if (uy == 0x7ff00000)
{
if (dy == 0x00000000)
return hpi.d;
}
else if (uy == 0xfff00000)
{
if (dy == 0x00000000)
return mhpi.d;
}
SET_RESTORE_ROUND (FE_TONEAREST);
/* either x/y or y/x is very close to zero */
ax = (x < 0) ? -x : x;
ay = (y < 0) ? -y : y;
de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
if (de >= ep)
{
return ((y > 0) ? hpi.d : mhpi.d);
}
else if (de <= em)
{
if (x > 0)
{
double ret;
if ((z = ay / ax) < TWOM1022)
ret = normalized (ax, ay, y, z);
else
ret = signArctan2 (y, z);
if (fabs (ret) < DBL_MIN)
{
double vret = ret ? ret : DBL_MIN;
double force_underflow = vret * vret;
math_force_eval (force_underflow);
}
return ret;
}
else
{
return ((y > 0) ? opi.d : mopi.d);
}
}
/* if either x or y is extremely close to zero, scale abs(x), abs(y). */
if (ax < twom500.d || ay < twom500.d)
{
ax *= two500.d;
ay *= two500.d;
}
/* Likewise for large x and y. */
if (ax > two500.d || ay > two500.d)
{
ax *= twom500.d;
ay *= twom500.d;
}
/* x,y which are neither special nor extreme */
if (ay < ax)
{
u = ay / ax;
EMULV (ax, u, v, vv, t1, t2, t3, t4, t5);
du = ((ay - v) - vv) / ax;
}
else
{
u = ax / ay;
EMULV (ay, u, v, vv, t1, t2, t3, t4, t5);
du = ((ax - v) - vv) / ay;
}
if (x > 0)
{
/* (i) x>0, abs(y)< abs(x): atan(ay/ax) */
if (ay < ax)
{
if (u < inv16.d)
{
v = u * u;
zz = du + u * v * (d3.d
+ v * (d5.d
+ v * (d7.d
+ v * (d9.d
+ v * (d11.d
+ v * d13.d)))));
if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u))
return signArctan2 (y, z);
MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
s1 = v * (f11.d + v * (f13.d
+ v * (f15.d + v * (f17.d + v * f19.d))));
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
i = (TWO52 + TWO8 * u) - TWO52;
i -= 16;
t3 = u - cij[i][0].d;
EADD (t3, du, v, dv);
t1 = cij[i][1].d;
t2 = cij[i][2].d;
zz = v * t2 + (dv * t2
+ v * v * (cij[i][3].d
+ v * (cij[i][4].d
+ v * (cij[i][5].d
+ v * cij[i][6].d))));
if (i < 112)
{
if (i < 48)
u9 = u91.d; /* u < 1/4 */
else
u9 = u92.d;
} /* 1/4 <= u < 1/2 */
else
{
if (i < 176)
u9 = u93.d; /* 1/2 <= u < 3/4 */
else
u9 = u94.d;
} /* 3/4 <= u <= 1 */
if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1))
return signArctan2 (y, z);
t1 = u - hij[i][0].d;
EADD (t1, du, v, vv);
s1 = v * (hij[i][11].d
+ v * (hij[i][12].d
+ v * (hij[i][13].d
+ v * (hij[i][14].d
+ v * hij[i][15].d))));
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
/* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */
if (u < inv16.d)
{
v = u * u;
zz = u * v * (d3.d
+ v * (d5.d
+ v * (d7.d
+ v * (d9.d
+ v * (d11.d
+ v * d13.d)))));
ESUB (hpi.d, u, t2, cor);
t3 = ((hpi1.d + cor) - du) - zz;
if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d))
return signArctan2 (y, z);
MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
s1 = v * (f11.d
+ v * (f13.d
+ v * (f15.d + v * (f17.d + v * f19.d))));
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
i = (TWO52 + TWO8 * u) - TWO52;
i -= 16;
v = (u - cij[i][0].d) + du;
zz = hpi1.d - v * (cij[i][2].d
+ v * (cij[i][3].d
+ v * (cij[i][4].d
+ v * (cij[i][5].d
+ v * cij[i][6].d))));
t1 = hpi.d - cij[i][1].d;
if (i < 112)
ua = ua1.d; /* w < 1/2 */
else
ua = ua2.d; /* w >= 1/2 */
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
return signArctan2 (y, z);
t1 = u - hij[i][0].d;
EADD (t1, du, v, vv);
s1 = v * (hij[i][11].d
+ v * (hij[i][12].d
+ v * (hij[i][13].d
+ v * (hij[i][14].d
+ v * hij[i][15].d))));
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
/* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */
if (ax < ay)
{
if (u < inv16.d)
{
v = u * u;
zz = u * v * (d3.d
+ v * (d5.d
+ v * (d7.d
+ v * (d9.d
+ v * (d11.d + v * d13.d)))));
EADD (hpi.d, u, t2, cor);
t3 = ((hpi1.d + cor) + du) + zz;
if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d))
return signArctan2 (y, z);
MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
s1 = v * (f11.d
+ v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
i = (TWO52 + TWO8 * u) - TWO52;
i -= 16;
v = (u - cij[i][0].d) + du;
zz = hpi1.d + v * (cij[i][2].d
+ v * (cij[i][3].d
+ v * (cij[i][4].d
+ v * (cij[i][5].d
+ v * cij[i][6].d))));
t1 = hpi.d + cij[i][1].d;
if (i < 112)
ua = ua1.d; /* w < 1/2 */
else
ua = ua2.d; /* w >= 1/2 */
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
return signArctan2 (y, z);
t1 = u - hij[i][0].d;
EADD (t1, du, v, vv);
s1 = v * (hij[i][11].d
+ v * (hij[i][12].d
+ v * (hij[i][13].d
+ v * (hij[i][14].d
+ v * hij[i][15].d))));
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
/* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */
if (u < inv16.d)
{
v = u * u;
zz = u * v * (d3.d
+ v * (d5.d
+ v * (d7.d
+ v * (d9.d + v * (d11.d + v * d13.d)))));
ESUB (opi.d, u, t2, cor);
t3 = ((opi1.d + cor) - du) - zz;
if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d))
return signArctan2 (y, z);
MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2);
if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
i = (TWO52 + TWO8 * u) - TWO52;
i -= 16;
v = (u - cij[i][0].d) + du;
zz = opi1.d - v * (cij[i][2].d
+ v * (cij[i][3].d
+ v * (cij[i][4].d
+ v * (cij[i][5].d + v * cij[i][6].d))));
t1 = opi.d - cij[i][1].d;
if (i < 112)
ua = ua1.d; /* w < 1/2 */
else
ua = ua2.d; /* w >= 1/2 */
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
return signArctan2 (y, z);
t1 = u - hij[i][0].d;
EADD (t1, du, v, vv);
s1 = v * (hij[i][11].d
+ v * (hij[i][12].d
+ v * (hij[i][13].d
+ v * (hij[i][14].d + v * hij[i][15].d))));
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2);
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
return signArctan2 (y, z);
return atan2Mp (x, y, pr);
}
#ifndef __ieee754_atan2
strong_alias (__ieee754_atan2, __atan2_finite)
#endif
/* Treat the Denormalized case */
static double
SECTION
normalized (double ax, double ay, double y, double z)
{
int p;
mp_no mpx, mpy, mpz, mperr, mpz2, mpt1;
p = 6;
__dbl_mp (ax, &mpx, p);
__dbl_mp (ay, &mpy, p);
__dvd (&mpy, &mpx, &mpz, p);
__dbl_mp (ue.d, &mpt1, p);
__mul (&mpz, &mpt1, &mperr, p);
__sub (&mpz, &mperr, &mpz2, p);
__mp_dbl (&mpz2, &z, p);
return signArctan2 (y, z);
}
/* Stage 3: Perform a multi-Precision computation */
static double
SECTION
atan2Mp (double x, double y, const int pr[])
{
double z1, z2;
int i, p;
mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1;
for (i = 0; i < MM; i++)
{
p = pr[i];
__dbl_mp (x, &mpx, p);
__dbl_mp (y, &mpy, p);
__mpatan2 (&mpy, &mpx, &mpz, p);
__dbl_mp (ud[i].d, &mpt1, p);
__mul (&mpz, &mpt1, &mperr, p);
__add (&mpz, &mperr, &mpz1, p);
__sub (&mpz, &mperr, &mpz2, p);
__mp_dbl (&mpz1, &z1, p);
__mp_dbl (&mpz2, &z2, p);
if (z1 == z2)
{
LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1);
return z1;
}
}
LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1);
return z1; /*if impossible to do exact computing */
}