mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 21:10:07 +00:00
376 lines
8.0 KiB
C
376 lines
8.0 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
/*********************************************************************/
|
|
/* MODULE_NAME: utan.c */
|
|
/* */
|
|
/* FUNCTIONS: utan */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mydefs.h utan.h */
|
|
/* branred.c */
|
|
/* utan.tbl */
|
|
/* */
|
|
/*********************************************************************/
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include "endian.h"
|
|
#include <dla.h>
|
|
#include "mydefs.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-double.h>
|
|
#include <fenv.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
/* tan with max ULP of ~0.619 based on random sampling. */
|
|
double
|
|
SECTION
|
|
__tan (double x)
|
|
{
|
|
#include "utan.h"
|
|
#include "utan.tbl"
|
|
|
|
int ux, i, n;
|
|
double a, da, a2, b, db, c, dc, fi, gi, pz,
|
|
s, sy, t, t1, t2, t3, t4, w, x2, xn, y, ya,
|
|
yya, z0, z, z2;
|
|
mynumber num, v;
|
|
|
|
double retval;
|
|
|
|
int __branred (double, double *, double *);
|
|
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
|
|
/* x=+-INF, x=NaN */
|
|
num.d = x;
|
|
ux = num.i[HIGH_HALF];
|
|
if ((ux & 0x7ff00000) == 0x7ff00000)
|
|
{
|
|
if ((ux & 0x7fffffff) == 0x7ff00000)
|
|
__set_errno (EDOM);
|
|
retval = x - x;
|
|
goto ret;
|
|
}
|
|
|
|
w = (x < 0.0) ? -x : x;
|
|
|
|
/* (I) The case abs(x) <= 1.259e-8 */
|
|
if (w <= g1.d)
|
|
{
|
|
math_check_force_underflow_nonneg (w);
|
|
retval = x;
|
|
goto ret;
|
|
}
|
|
|
|
/* (II) The case 1.259e-8 < abs(x) <= 0.0608 */
|
|
if (w <= g2.d)
|
|
{
|
|
x2 = x * x;
|
|
|
|
t2 = d9.d + x2 * d11.d;
|
|
t2 = d7.d + x2 * t2;
|
|
t2 = d5.d + x2 * t2;
|
|
t2 = d3.d + x2 * t2;
|
|
t2 *= x * x2;
|
|
|
|
y = x + t2;
|
|
retval = y;
|
|
/* Max ULP is 0.504. */
|
|
goto ret;
|
|
}
|
|
|
|
/* (III) The case 0.0608 < abs(x) <= 0.787 */
|
|
if (w <= g3.d)
|
|
{
|
|
i = ((int) (mfftnhf.d + 256 * w));
|
|
z = w - xfg[i][0].d;
|
|
z2 = z * z;
|
|
s = (x < 0.0) ? -1 : 1;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
y = fi + t2;
|
|
retval = (s * y);
|
|
/* Max ULP is 0.60. */
|
|
goto ret;
|
|
}
|
|
|
|
/* (---) The case 0.787 < abs(x) <= 25 */
|
|
if (w <= g4.d)
|
|
{
|
|
/* Range reduction by algorithm i */
|
|
t = (x * hpinv.d + toint.d);
|
|
xn = t - toint.d;
|
|
v.d = t;
|
|
t1 = (x - xn * mp1.d) - xn * mp2.d;
|
|
n = v.i[LOW_HALF] & 0x00000001;
|
|
da = xn * mp3.d;
|
|
a = t1 - da;
|
|
da = (t1 - a) - da;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (VI) The case 0.787 < abs(x) <= 25, 0 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
y = c + dc;
|
|
retval = (-y);
|
|
/* Max ULP is 0.506. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
y = a + t2;
|
|
retval = y;
|
|
/* Max ULP is 0.506. */
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */
|
|
|
|
i = ((int) (mfftnhf.d + 256 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
y = gi - t2;
|
|
retval = (-sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
y = fi + t2;
|
|
retval = (sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* (---) The case 25 < abs(x) <= 1e8 */
|
|
if (w <= g5.d)
|
|
{
|
|
/* Range reduction by algorithm ii */
|
|
t = (x * hpinv.d + toint.d);
|
|
xn = t - toint.d;
|
|
v.d = t;
|
|
t1 = (x - xn * mp1.d) - xn * mp2.d;
|
|
n = v.i[LOW_HALF] & 0x00000001;
|
|
da = xn * pp3.d;
|
|
t = t1 - da;
|
|
da = (t1 - t) - da;
|
|
t1 = xn * pp4.d;
|
|
a = t - t1;
|
|
da = ((t - a) - t1) + da;
|
|
EADD (a, da, t1, t2);
|
|
a = t1;
|
|
da = t2;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (VIII) The case 25 < abs(x) <= 1e8, 0 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
y = c + dc;
|
|
retval = (-y);
|
|
/* Max ULP is 0.506. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
y = a + t2;
|
|
retval = y;
|
|
/* Max ULP is 0.506. */
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */
|
|
i = ((int) (mfftnhf.d + 256 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
y = gi - t2;
|
|
retval = (-sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
y = fi + t2;
|
|
retval = (sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* (---) The case 1e8 < abs(x) < 2**1024 */
|
|
/* Range reduction by algorithm iii */
|
|
n = (__branred (x, &a, &da)) & 0x00000001;
|
|
EADD (a, da, t1, t2);
|
|
a = t1;
|
|
da = t2;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (X) The case 1e8 < abs(x) < 2**1024, 0 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
y = c + dc;
|
|
retval = (-y);
|
|
/* Max ULP is 0.506. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
y = a + t2;
|
|
retval = y;
|
|
/* Max ULP is 0.507. */
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */
|
|
i = ((int) (mfftnhf.d + 256 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
y = gi - t2;
|
|
retval = (-sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
y = fi + t2;
|
|
retval = (sy * y);
|
|
/* Max ULP is 0.62. */
|
|
goto ret;
|
|
}
|
|
|
|
ret:
|
|
return retval;
|
|
}
|
|
|
|
#ifndef __tan
|
|
libm_alias_double (__tan, tan)
|
|
#endif
|